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image segmentation algorithm was developed which exploited the small-scale planarity
of tactical vehicles. The post-segmentation target detection problem was that of parti-
tioning segmented targets from segmented non-target regions. Feature information was
processed to accomplish this task. The Bayesian minimum error criterion was adopted as
the decision rule.

Two single sensor detection algorithms (FLIR-only and range-only) and three multi-
ple sensor detection algorithms (FLIR assisted by range, FLIR/range; range assisted by
FLIR, range/FLIR; and a single decision algorithm) were implemented. A novel multiple
sensor feature, called the correspondence feature, was developed to exploit the observa-
tion that targets occupy the same space in all sensor views of a scene, while segmented
non-target regions behave in this manner much less frequently.

), When performance was optimized for all cases, the multiple sensor approaches
were found to provide improved performance in all comparative performance measures.
In addition, the single decision algorithm was shown to detect more targets than any of
the other detection algorithms. These results support the hypothesis that use of multiple
sensors in future targeting systems will be advantageous.
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Abstract

Automatic detection of tactical targets in corresponding sets of non-pixel registered

forward-looking infrared (FLIR) sensor images and range sensor images was studied. A

processing architecture was developed to address the problems associated with process-

ing non-pixel registered imagery. The architecture used specialized sensor-dependent

processing to segment the images, measure features, and analyze the single sensor feature

data. The multiple sensor processes of geometric registration, multiple sensor feature

measurement, and multiple sensor target detection were then applied. Segmented regions

were registered between the images, rather than pixels.

Sensor-dependent segmentation processes passed a large fraction of the targets

present in the imagery, along with a larger number of regions which did not correspond

to any target. FLIR images were segmented based on pixel brightness. A new range

image segmentation algorithm was developed which exploited the small-scale planarity

of tactical vehicles. The post-segmentation target detection problem was that of parti-

tioning segmented targets from segmented non-target regions. Feature information was

processed to accomplish this task. The Bayesian minimum error criterion was adopted as

the decision rule.

Two single sensor detection algorithms (FLIR-only and range-only) and three multi-

ple sensor detection algorithms (FLIR assisted by range, FLIR/range; range assisted by

FLIR, range/FLIR; and a single decision algorithm) were implemented. A novel multiple

sensor feature, called the correspondence feature, was developed to exploit the observa-

tion that targets occupy the same space in all sensor views of a scene, while segmented

non-target regions behave in this manner much less frequently. Multiple sensor target

detection algorithms were distinguished from single sensor detection algorithms by the

ix



addition of correspondence feature information to the decision processes for the multiple

sensor cases. Three comparative performance measures were used: (1) minimum error

rate; (2) maximum detection rate; and (3) minimum rate of false alarms per detection

declaration.

When performance was optimized for all cases, the multiple sensor approaches

were found to provide improved performance in all comparative performance measures.

In addition, the single decision algorithm was shown to detect more targets than any of

the other detection algorithms. These results support the hypothesis that use of multiple

sensors in future targeting systems will be advantageous.
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MULTIPLE SENSOR FUSION FOR DETECTING

TARGETS IN FLIR AND RANGE IMAGES

I. Introduction

1.0 Problem Statement

The problem addressed in this dissertation is automatic multiple sensor target detec-

tion. Approaches to multiple sensor target detection were sought which were capable of

overcoming some of the limitations of single sensor techniques and improving target

detection performance compared to single sensor approaches. Evaluation of multiple

sensor approaches to target detection and comparison of these approaches to single sen-

sor approaches was also addressed. A data base of real, corresponding forward-looking

infrared (FLIR) and absolute range images was used to develop and test multiple sensor

techniques.

The goals of this research were to develop a general architecture for the extraction

and use of multiple sensor information, and to develop and demonstrate multiple sensor

processing approaches to improving target detection and false alarm performance. An

additional goal was to compare single sensor and multiple sensor performance under

equivalent conditions. A meaningful demonstration of the power of multiple sensor infor-

mation processing was desired to develop a deeper understanding of how to extract and

process multiple sensor information, to provide a concrete example of a working multiple

sensor target detection system, and to provide evidence of performance improvements

resulting from using multiple sensors. Testing of single and multiple sensor detection



systems under equivalent conditions was important for meaningful comparisons between

single and multiple sensor approaches.

The initial hypotheses were that the performance of automatic target detection sys-

tems could be improved through the use of multiple sensors, and that the processing

architecture shown in Figure (1-1) provided a general and useful approach to processing

multiple sensor information. Performance improvements were expected by virtue of the

additional information available in a multiple sensor system. The architecture provided a

functional partitioning of the subproblems which was logical and sufficiently general to

apply to other multiple sensor processing problems.

In the architecture of Figure (1-1) sensor-dependent processing was performed to

locate potential target-bearing regions, called regions of interest, in the sensor images.

Images which were non-zero only where regions of interest had been found were output

to the feature measurement stage and to the image memory. The image memory and the

data buffer were used to hold useful images and data for easy access in subsequent

processes. Feature measurement, the act of converting pixel information about the

regions of interest into numerical information, was also conducted on a sensor-dependent

basis. The feature values were passed onto the sensor-dependent analysis block and to

the data buffer. Sensor-dependent analysis consisted of computing class-conditioned

probabilities for the single-sensor features observed, which were required by the detec-

tion algorithms. The multiple sensor decision and control processes geometrically

registered the regions of interest, measured a novel multiple sensor feature, and per-

formed the multiple sensor target detection processes. Though the sensor-dependent

processes are shown for only one sensor in Figure (1-1), and this architecture was

demonstrated for two sensors in this research project, the architecture should generalize

directly to the case of more than two sensors.

The original contributions of this research lie in the development of a multiple sen-

SOr processing philosophy, validation of the processing architecture, demonstrated perfor-
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Region of
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Sensor
Dependent
Analysis

Multisensor
W Decision and

Control

Detection Reports

Figure (1-1). Proposed architecture for multiple sensor automatic target detection
processing system.

mance improvements over single sensor approaches as a direct result of using a new mul-

tiple sensor feature, and certain aspects of the low-level processing of the sensor data.
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Philosophical, theoretical, and implementation details of these topics are discussed in the

succeeding chapters.

This work concerned the problem of automatically detecting man-made military

vehicles in natural backgrounds only. No research was performed on the problem of

recognizing the targets detected. However, an approach to multiple sensor target detec-

tion, such as the one developed here, would provide a useful target cuer for input to a tar-

get recognition system. In a target recognition system, a target detection system would

filter the scene for potential target-bearing regions which would be passed to the recogni-

tion system. The role of the recognition system would be to determine the class of seg-

mented regions passed by the target detection system; for example, tank, truck, armored

personnel carrier, or clutter. Multiple sensor information could also be used in the recog-

nition process, but this work was not considered here.

Five sections remain in this introductory chapter. Motivating factors for this

research project are discussed in the next section. This is followed by a summary of the

approach. Background material pertinent to the general problem of multiple sensor

information extraction and fusion is then presented. Next, the significant results of this

research are summarized. The chapter concludes with an overview of the organization of

the dissertation.

1.1 Motivation

Research in the general area of automatic target detection is motivated by the desire

to automate the process of detecting targets. Potential military applications of a viable

automatic target detection technology include a wide range of manned fighting vehicles

and unmanned missiles. Reliable automatic detection of targets is a step toward realizing

targeting systems which require less, or no, human intervention.

It has been observed that current single sensor targeting technology is not capable of

meeting projected operational requirements (Comparato, 1988). As a result, multiple

4



sensor approaches have been proposed to bolster targeting perf- .,ance (Comparato,

1988; Duane, 1988; Roggemann et al, 1988; Ruck et al, 1988).

Multiple sensor systems should be capable of improved target detection perfor-

mance, on average, when compared to single sensor systems by virtue of the additional

information available to a multiple sensor detection system. Additionally, a multiple

sensor system should provide some capability when one sensor is performing poorly due

to imaging conditions, intentional countermeasures, or malf-nctions, while a single sen-

sor system would be severely limited or disabled under such conditions (Bullock et al,

1988; Comparato, 1988).

The scientific and engineering aspects of multiple sensor information extraction and

fusion are active topics in the research community (Bullock et al, 1988; Comparato,

1988; Duane, 1988; Duda et al, 1979a; Magee and Aggarwal, 1985; Magee et al, 1985;

Mitiche and Aggarwal, 1986; Roggemann et al 1988). Questions regarding the types of

information to extract from multiple sensor data, registration of information in time and

space, and information combination methods are unresolved for many applications.

Thus, new approaches and results in nearly all aspects of multiple sensor information

extraction and fusion are of interest to the research community.

1.2 Approach

The philosophy of performing multiple sensor processing developed and imple-

mented here was that of partitioning sensor-dependent and multiple sensor processes.

This approach was well suited to the case examined, where using multiple sensor infor-

mation earlier in the target detection process would have been complicated by lack of

pixel registration between the different sensor images. The individual strengths and the

fundamentally different views of the scene provided by FLIR and range sensors were

exploited by specialized low-level pixel processing and feature extraction algorithms.

Geometric registration of the sensor-dependent information and measurement of multiple

sensor information was performed after completion of the sensor-dependent processes,

5



using information derived from the sensor-dependent processes. Thus, the sensor depen-

dent processes were concerned with the measurement of information about the scene

based on their unique view of the scene. The multiple sensor processes were concerned

with geometrically registering regions in the images, measuring information which could

not be obtained from either sensor operating alone, and using this information to make

decisions. This partitioning of functions would, in principle, allow a multiple sensor sys-

tem to continue functioning in the presence of performance degrading conditions impact-

ing one sensor.

The multiple sensor target detection problem was addressed in the following

manner. A processing architecture suitable for processing multiple sensor imagery was

developed. A data base of real, corresponding sets of high quality absolute range and

FLIR data was obtained and used for algorithm development and testing. Segmentation

algorithms for FLIR and range images, which extracted potential target-bearing regions

in the imagery, were developed. The segmentation algorithms found most of the targets,

but also passed a significant number of non-target regions. The post-segmentation target

detection problem was modeled as a two class discrimination problem, with the classes

being target and non-target. A set of features found to be suitable for the two class

discrimination process was developed and computed for all segmented regions in the

FLIR and range image data bases. A new multiple sensor feature called the correspon-

dence feature, obtainable only through use of multiple sensors, was developed to provide

additional information to the multiple sensor classification algorithms. The single and

multiple sensor classification rules were implemented, tested, and compared. Each step in

the approach is now summarized.

Modeling the target detection problem as a two class discrimination problem was a

reasonable concession to the nature of image segmentation. The output of a segmentation

system was an image composed entirely of zeroes except where potential target-bearing

regions had been found. The segmentation algorithms were imperfect selectors of targets:

6



segmented images typically contained most of the targets which appeared in the image,

but also passed a large number of non-target regions. The post-segmentation class

discrimination problem was that of separating targets and non-targets through feature

measurements and decision logic.

A multiple sensor processing architecture was developed which exploited the indi-

vidual strengths of the sensors, and extracted and processed information available from

multiple sensors. Extraction of single and multiple sensor information, geometric regis-

tration, two single sensor target detection techniques, and three multiple target detection

techniques were implemented in the architecture. The processing system developed con-

tained outputs for target detection and false alarm performance evaluation for FLIR-only,

range-only, and three types of multiple sensor target detection algorithms. These outputs

allowed easy comparisons between the various approaches.

The data base consisted of a set of 97 real FLIR images and 57 real range images.

The data base was obtained from the Army Center for Night Vision and Electro-Optics,

Ft. Belvoir, VA. It was collected as part of a larger effort to acquire a data base for the

development and testing of automatic targeting systems for Army applications.

Corresponding FLIR and range images in this data base were from colocated sensors: the

images were not pixel-registered. The data provided was manually inspected to elim-

inate image sets which were unsatisfactory for sensor fusion research. Corresponding

image sets were excluded from the sensor fusion data base due to high noise, most com-

monly in the range image, or the inability to choose a common reference point in both

images for geometric registration purposes.

Sensor-dependent segmentation was accomplished through development and imple-

mentation of separate FLIR and range image segmentation algorithms. The tendency of

sun warmed and exercised vehicles to appear brighter than the background was exploited

by the FLIR segmentation algorithm. The observation that tactical military vehicles tend

to be composed of small, approximately planar surfaces, while much of the background

7



does not possess this property, was exploited by the range image segmentation algorithm.

Both the FLIR and the range image segmentation algorithms accurately segmented a

large fraction of the targets observable in the imagery. Both segmentation algorithms also

passed a number of non-target regions.

A system for consistently identifying segmented regions was developed, and the

segmented images were manually inspected to obtain image truth. In the scheme for

acquiring image truth, each segmented region was manually identified as either a target

or a non-target, and this information was stored. The target detection systems were then

tested by using the class estimation algorithm to obtain an estimate of the class member-

ship of each segmented region and comparing the result to the image truth for that region.

Image truth data was also used to compute class-conditioned probability density func-

tions needed to train the classification algorithm.

An initial set of single sensor features were selected based on an evaluation of the

individual sensor physics and the distinguishing characteristics of segmented target and

non-target regions. The features used were insensitive to small changes in the pixels

present in a segmented region; for example, the length-to-width ratio of a segmented

region. Feature values were computed and stored for all segmented regions in the data

base. A feature selection process was applied to select a subset of the initial feature set

which provided optimal performance.

A novel multiple sensor feature, called the correspondence feature, was developed

to add information to the multiple sensor class estimation process. The philosophy of the

correspondence feature was that targets viewed by both sensors jointly occupy the same

scene space, while segmented non-targets behave in this manner much less frequently.

Accurate geometric registration between the sensor images was required to measure

the correspondence feature. A technique requiring a one-time manual review of the seg-

mented images was developed to obtain the required registration. This technique

allowed the selection of a single pixel in each of a corresponding set of FLIR and range

8



images, called the common pixel, to be selected which originated from approximately the

same point in the scene. Location of corresponding positions between the images was

then handled by computing angular displacements from the common pixel, a process

called pixel translation. Common pixel locations for each pair of images were stored and

accessed as needed.

Three multiple sensor detection techniques were developed: FLIR as the dominant

sensor, called the 'FLIR looking into range' (FLIR/range) algorithm; range as the dom-

inant sensor, called the 'range looking into FLIR' algorithm (range/FLIR); and an algo-

rithm which provided a single decision for each parcel of space segmented by either sen-

sor, called the 'single decision' (SD) algorithm. The FLUR/range and range/FLIR algo-

rithms used the concept of the decision process in a dominant sensor image being

assisted by information from the other sensor image, called the non-dominant sensor

image. For example, in the FLIR/range algorithm the FLIR image was the dominant sen-

sor image. The FLIR/range and range/FLIR algorithms were capable of declaring detec-

tions only on targets segmented in the dominant sensor image. Hence, if the dominant

sensor failed to segment a target, that target was forever lost in these two approaches.

The SD algorithm did not possess this limitation, and was capable of correctly

detecting targets which were segmented by only one sensor. The single decision algo-

rithm required a technique for resolving cases where segmented regions in both images

occupied the same region of space. A spatial deconfliction rule was developed to handle

this problem.

A classic Bayesian approach was taken to the class estimation problem. The Baye-

sian minimum error decision criterion (Melsa and Cohn, 1978: 42; Devijver and Kittler,

1982: 33-43), called the Maximum a Posteriori (MAP) decision rule, was used. Class-

conditioned probability density functions (PDF) computed for the features provided part

of the information required to used the MAP approach. Prior densities for the classes,

also required for the MAP approach, were assumed to be equally likely. The class-



current active issues in sensor fusion and the potential benefits of such work is available

(Mitiche and Aggarwal, 1986). Common themes in the sensor fusion literature are the

benefits derived from extracting and using additional information available from more

than one sensor (Duda et al, 1979a; Garvey and Lowrance, 1981; Lowrance and Garvey,

1983; Haskins, 1984; Mitiche and Aggarwal, 1986; Bogler, 1987; Kreigman et al, 1987;

Comparato, 1988; Roggemann et al, 1988; Ruck et al, 1988) and the ability to maintain

some level of system performance in the presence of sensor failures or degradations

(Comparato, 1988; Bullock et al. 1988). Performance improvements through extraction

and use of additional information available in a multiple sensor environment was the

principal focus of this research.

A critical aspect of implementing any multiple sensor processing system is the need

to register information obtained from the individual sensors in some geometrical space

(Haskins, 1984; Mitiche and Aggarwal, 1986; Comparato, 1988; Roggemann et al,

1988). Registration allows information obtained from the sensors to be combined for

appropriate regions of space. Pixel-registered sensors are not required for this process,

but knowledge of the geometrical transformation between the various sensing coordi-

nates is required (Haskins, 1984; Mitiche and Aggarwal, 1986).

Biological and mechanical examples of the use of multiple sensor information exist.

The pit viper family of snakes integrate infrared sensing and vision to determine the

correct striking angle (Mitiche and Aggarwal, 1986: 381), and humans routinely integrate

information from a combination of sensory inputs to analyze their environment. Mechan-

ical examples of the use of multiple sensor information include use of range and visible

imagery to extract planar regions from office scenes (Duda, et al, 1979a), integration of

various electronic warfare sensors with intelligence information to understand a threat

environment (Garvey and Lowrance, 1981; Lowrance and Garvey, 1983; Bogler, 1987),

and integration of stereo vision, range sensing, and tactile contact sensors to develop a

'world model' used in guiding a robot (Kreigman, et al, 1987). In both the biological and
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the mechanical cases the additional information obtained from using more than one sen-

sor enhances the performance of the system.

The cases of multiple sensor fusion cited above constitute evidence indicating that

carefully designed multiple sensor systems can improve the performance of a multiple

sensor system over the performance obtained by using only one sensor. In the absence of

general results for choosing the sensors, types of information to extract, and a rule for

combining and interpreting the information from multiple sensors, the ingenuity of the

designer is taxed for each new application. Results of previous researchers were viewed

as concrete examples of successful sensor fusion, providing inspiration and confidence

that careful design and execution of multiple sensor algorithms could improve target

detection performance.

None of the literature reviewed offered a direct solution to some of the subproblems

defined during this project. In particular, suitable segmentation algorithms for FLIR and

range irtages were not available, no specific set of sensor-dependent features have been

defined, geometric registration between non-pixel registered images was not addressed,

and no multiple sensor features were found in the literature. However, background infor-

mation was found which helped structure approaches to the subproblems addressed

above, and provided insight into other subproblems addressed during this research. Due

to the diversity of the topics covered, the pertinent background material is discussed in

the appropriate chapters.

1.4 Significant Results

Significant, and in some cases novel techniques and results, were developed in the

course of this research. Specifically, a philosophy for processing multiple sensor informa-

tion was developed and a general architecture for implementing this philosophy was suc-

cessfully demonstrated; an effective FUR image segmentation algorithm and a novel

segmentation algorithm for segmenting tactical targets in range images were developed

and demonstrated; a novel multiple sensor feature, called the correspondence feature,
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was developed and shown to provide a powerful piece of information to the multiple sen-

sor target detection process; use of the correspondence feature in conjunction with other

features was shown to provide superior performance over either FLIR or range sensor

performance alone; and an algorithm which declared a single decision for each parcel of

space segmented by either sensor, the SD algorithm, was shown to detect targets which

were not segmented in the dominant sensor image.

The utility of the philosophy of partitioning single and multiple sensor functions in

a multiple sensor processing system which does not use pixel-registered sensors was vali-

dated. Performance improvements in detection and false alarm rates which resulted from

implementing this philosophy provide strong evidence that performance improvements

could be obtained for future systems through multiple sensor processing.

The FLIR segmentation algorithm is significant in the sense that reliable, high qual-

ity segmentation of targets was obtained. The FLIR segmentation algorithm passed

approximately 91% of the targets found in the data base. Non-target regions appearing in

the segmented images, or false segmentations, occurred at a rate of 0.58 per segmented

region. Normalized on a per square degree of image space basis, false segmentations

occurred in the FLIR image data base at a rate of 0.18 per square degree.

The range image segmentation system was unique in that target and non-target pix-

els are initially partitioned based on a novel planarity test. Use of planarity without

regard for the orientation of the planes is a new and effective method for segmenting

man-made vehicles from natural backgrounds in range image. The planarity test used

was distinct from previous tests, and the critical parameter in the algorithm was shown to

be approximated well by a function of readily obtainable, physically significant range

sensing parameters. The planarity test automatically adapted to imaging and sensor per-

formance measures and range. The range image target segmentation rate was approxi-

mately 88%. False segmentations occurred at a rate of 0.69 per segmented region, or at a

rate of 1.61 per square degree.
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The correspondence feature, which may only be measured in a multiple sensor

environment, was developed to add information to the multiple sensor class estimation

and algorithm control processes. The idea embodied in the correspondence feature was

that targets jointly occupy the same space regardless of the sensing mode, while seg-

mented non-target regions do not tend to behave in this manner. The correspondence

feature measurement provided information about the joint spatial occupancy of seg-

mented regions which was used in the class estimation process for all the multiple sensor

algorithms, and in the spatial deconfliction process in the SD algorithm. The correspon-

dence feature was an excellent feature because the FLIR and range segmentation systems

tended to have false segmentations on different types of scene elements.

Use of correspondence feature information distinguished the information available

to the multiple sensor target detection processes from the information available to the

single sensor processes. All multiple sensor approaches developed provided improved

performance over the single sensor cases in all the performance measures used. This

result illustrates the benefits of multiple sensor processing for automatic target detection.

The best performance obtained, with all the systems optimized for maximum detec-

tion rate, is shown in Figure (1-2). The performance of five target detection algorithms is

summarized in Figure (1-2): FLIR and range denote single sensor approaches; and

FLIR/range, range/FLIR, and single decision denote multiple sensor approaches. Figure

(1-2) shows that use of multiple sensor information was found to improve both target

detection rates and the rate of false alarms per detectior declaration.

In Figure (1-2), the detection rates for all algorithms are reported normalized to the

number of segmented target regions appearing the the appropriate sensor image data base

which were viewed completely by both sensor images. All segmented range image

regions in the range image data base were viewed completely by the corresponding FLIR

images. However, the converse was not true. A subset of all segmented FLIR regions

was viewed by the range image data base. This situation is illustrated in Figure (1-3).
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Detection System Performance

Detection
Rate False Alarm per

1.0 0.95 0.93 Detection Declaration
0.86 0.85 FUR 0.22

Range 0.34
FLIPJRange N/A
Range/FLIR 0.13
Single Decision 0.14

FLUR Range FLIR Range/ Single
Range FLUR Decision

*Sinele Decision: Additional Tareets

26/36 Targets Correct, Not Segmented by FUR
6/11 Targets Correct, Not Segmented by Range

Figure (1-2). Summary of target detection and false alarm performance.

in Figure (1-3) the typical geometric relationship between FUR and range image

views of a scene is shown. The portion of the scene viewed by the range images was uni-

formly contained within the portion of the scene viewed by the FUR images in the data

base. Thus, there were more targets in the FUR image data base than in the range image

data base. However, only a subset of the FUR image targets and potential false alarms

were viewed completely by the range imagery. The results reported in this dissertation

discuss only the subset of targets and potential false alarms viewed completely by both

the FLIR and the range images.

Only a very small fraction of the potential FLIR image false alarms, 7.2%, was
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FUR Image

Range Image

Figure (1-3). Geometric relationship between the portion of the scene viewed by
the FUR image and that viewed by the range image.

viewed completely by the range image data base. Thus, any estimate of the false alarm

rate for FLIR images based on the set of potential FLIR image false alarms viewed com-

pletely by both sensors would be unduly low. Hence, the false alarm rate reported in Fig-

ure (1-2) is the result of FLIR-only performance on the entire data base of FLIR images.

It is for this reason that no false alarm rate is reported for the FLIR/range algorithm in

Figure (1-2).

Special note must be taken of the single decision algorithm performance. This algo-

rithm was capable of detecting segmented target regions regardless of whether the

regions appeared in both segmented images or in only one of the segmented images. The

other detection approaches were limited to declaring target detections on segmented tar-

get regions which appeared in only one segmented sensor image. For example, the

FLIR-only and FLIR/range algorithms were capable of detecting only the segmented
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target regions which appeared in the segmented FUR images. The single decision algo-

rithm detected 26 of 36 target regions which were not segmented in the FUR image data

base and 6 of 11 target regions which were not segmented in the range image data base.

A more detailed discussion of the data base and performance is contained in Chapter VI.

1.5 Organization of the Dissertation

This dissertation is organized into six remaining chapters. Chapters II through VI

contain technical discussions of the major problem areas addressed in the course of the

research. Chapter VII provides conclusions and recommendations for future research.

Chapter II provides a discussion of the philosophy and implementation of the pro-

cessing architecture used in this project. Chapters III and IV present the FLIR and range

image segmentation algorithms, respectively. Chapter V discusses the selection and com-

putation of single sensor features, geometric registration, and the multiple sensor

correspondence feature. Chapter VI presents the class estimation decision rule, single and

multiple sensor decision algorithms, and results computed under fair test conditions for

all the detection algorithms developed.
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II. Architecture for Fusing Information from Multiple Sensors

2.0 Introduction

The problem addressed in this chapter is that of defining a processing architecture

for performing multiple sensor target detection. The main requirements for the process-

ing architecture were that it be capable of extracting and merging information from

corresponding FLIR and range images for the purpose of automatically detecting targets,

and that it allow easy comparison of target detection approaches developed. This goal

required the extraction of information from the sensor data, the preservation of useful

information for later use, the ability to register information between different sensor

views of the scene, the ability to gather additional information from one sensor image

based on cues from another sensor, and the ability to perform a 'fair test' between com-

peting approaches to target detection.

The processing architecture developed met these objectives. This architecture is

shown in Figure (2-1). Individual strengths of the sensors were exploited in the sensor-

dependent processes of segmentation, feature measurement, and sensor-dependent

analysis. Useful information was retained in an image memory and a data buffer. A

multiple sensor algorithin controlled the collection and use of multiple sensor informa-

tion. Finally, the implementation allowed the computation and comparison of five dif-

ferent target detection schemes based on the sensors used in this research: FLIR only,

range only, FLIR looking into range, range looking into FLIR, and the single decision

case.

The philosophy of partitioning the sensor-dependent and multiple sensor processes

was found to be well suited to the problem of processing non-pixel registered multiple

sensor images. In this paradigm, the role of each of the sensor-dependent processing sys-

tems was to locate potential target-bearing regions through segmentation, and measure
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FUR/Range -*- Measure Corr. Feature Range/FUR
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Decision Algorithm

Single Decision
Detection Reports

Figure (2-1). Detailed multiple sensor processing architecture.
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features for these regions. Multiple sensor information was not processed until after spe-

cialized sensor-dependent processes had been applied to the raw sensor data. The role of

the multiple sensor processing was to geometrically register the potential target-bearing

regions found by the sensor dependent processes, measure multiple sensor information

for these regions, and render a class estimate (target or non-target) for each region.

The case for partitioning sensor-dependent and multiple sensor processes follows

from the lack of pixel registration between the images. Lack of pixel registration

between the images would have made multiple sensor pixel level processes requiring pre-

cise registration (Duda et al, 1979a; Duane, 1988) very difficult, and none were

attempted. The approach of registering segmented regions between the images, and

searching these 'cued' regions, was adopted. Pixel level searches were conducted within

cued regions to measure multiple sensor information. Allowances were made in the

measurements for the possibility of small registration errors.

Though precise pixel registration between the sensors was not required in the multi-

ple sensor processing system, a means of geometrically registering interesting regions, as

determined by the sensor-dependent segmentation processes, was required. Geometrical

registration of regions is a less stringent physical requirement on the sensors than the

requirement of pixel registration between the sensors. Approaches using geometrical

registration of non-pixel registered sensors allow each sensor used to be designed for

optimal performance without the added physical constraints on the sensors necessary to

obtain pixel registration. However, maintaining an accurate estimate of the geometrical

transformation between the sensors would be required when multiple sensor operations

are underway in non-pixel registered systems.

The computational burden associated with maintaining the geometric transforma-

tion between sensors in a non-pixel registered system is mitigated somewhat because

multiple sensors which are not pixel registered may be used to search disjoint regions

until multiple sensor information is required. Thus, the coverage of a non-pixel
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registered multiple sensor system is, in principle, greater than that obtainable with an oth-

erwise equivalent, but pixel registered multiple sensor system. The tradeoff between

pixel registered and non-pixel registered multiple sensor systems must be made based on

system performance requirements.

Two sections remain in this chapter. In the next section each functional block in

Figure (2-1) is discussed in detail. The functional blocks are discussed in the context of

information and data input/output. Implementation details are left to later chapters; the

goal here is to explain the overall philosophy and functioning of the system. Conclusions

are discussed in the final section of this chapter.

2.1 Architecture for Processing Multiple Sensor Information

The processing architecture shown in Figure (2-1) is a refinement of the processing

architecture originally proposed for this project, shown in Figure (1-1). This architecture

provided a powerful approach to extracting and using information available from two

sensors. The differences between the two figures resulted from knowledge gained in the

course of the research. Though the implementation presented was developed for two

sensors, the architecture should generalize directly to more than two sensors, as shown in

Figure (1-1).

Six major functions are represented in the architecture: (1) sensing; (2) segmenta-

tion; (3) feature measurement; (4) memory; (5) geometrical registration and correspon-

dence feature measurement; and (6) single and multiple sensor data analysis, control, and

decision processes. Some of these processes were sensor-dependent in that they were

performed using information available from only one sensor, while other processes used

information obtained from both sensors. Sensor dependent functions were sensing, seg-

mentation, single sensor feature measurement, and sensor-dependent data analysis. Mul-

tiple sensor functions were geometrical registration and correspondence feature measure-

ment, multiple sensor process control, and multiple sensor class estimation.
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Sensing was accomplished remotely from the processing. Descriptions of the sen-

sors used and the data collection methods are provided in Appendix A. From an

input/output perspective the sensors accepted their peculiar view of the scene as input

and provided images as output. The images were two-dimensional arrays of numbers,

where each entry in an array corresponded to the appropriate sensor's estimate of the

sensed quantity for the scene element sampled. FUR imagery provided estimates of the

relative apparent temperature distribution in the scene. Range images provided estimates

of the distance between the sensor and the scene element sampled. Sensor output was

passed to the segmentation systems and to the image memory.

Differences in low level processes were required because FLIR and range images

provide fundamentally different information about the scene observed. FUR images

provide a measure of the relative apparent temperature of each scene element (Lloyd,

1975:2-4), while range images provide a measure of the range from the sensor to each

scene element (Bachman, 1979:79-120; Due and Peterson, 1982:215-226). Hence, the

segmentation algorithms and, in some cases, the features measured for FLIR and range

images were quite different.

Segmentation, a sensor-dependent process, had the goal of automatically extracting

as many target regions as possible from the images while passing as few non-target

regions as possible. The inputs to the segmentation processes were sensor images. Out-

puts consisted of segmented images, and in the case of the range image segmentation

block, two useful intermediate images called the smoothed image and the error image.

The computation and use of these intermediate images are discussed in Chapters IV and

VI. Segmentation output was passed to the image memory and to the feature measure-

ment block.

Segmented images were images composed entirely of zeroes except where regions

passing all segmentation tests were found. The non-zero pixels in segmented images

held the value of the corresponding pixel position in the raw or smoothed images for
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FUR and range images, respectively. The non-zero regions in segmented range images

typically corresponded to the target pixels for most, or all, of the targets in the image, and

some regions which did not correspond to any target. Thus, the post-segmentation target

detection problem was reduced to partitioning the target regions from the non-target

regions in segmented images.

Separation of targets and non-targets, called class estimation, was based on the

measurement and analysis of feature information for each segmented region in both types

of image. Two types of features were used to accomplish this task: single sensor

features, and the multiple sensor correspondence feature.

Single sensor features were measured for each segmented region in both types of

image. Input to the single sensor feature measurement processes consisted of the

appropriate segmented image. In addition, the FLIR image feature measurement system

required the raw FLIR image as input and the range image feature measurement system

required the smoothed version of the range image as input. The features used were

insensitive to small changes in the pixels present in segmented regions. An example of

such a feature is the length-to-width ratio. Shape-related features were measured for both

types of image. Also, brightness-related features were measured for FLIR images and

distance-related features were measured for range images.

Output of the feature measurement process was an array of feature values indexed

to a positive integer identifying each segmented region in both types of image. A system

for consistently labeling the pixels in connected segmented regions was developed to

make this approach feasible. These outputs were passed to the sensor-dependent analysis

blocks and to a data buffer for later use.

The main function of sensor-dependent analysis of the feature information was to

compute the class-conditioned probability of observing the combination of features

measured for each segmented region. Feature values for each segmented region

comprised the input to the sensor-dependent analysis blocks. Discrete class-conditioned
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probability density functions (PDF), obtained from the training set and stored in the

sensor-dependent analysis functional block, were used to obtain these class-conditioned

probabilities. These probabilities were the most important output of the sensor-

dependent analysis block. The outputs were passed to the data buffer for later use.

The sensor-dependent analysis function also made a single sensor estimate of the

class (target or non-target) of each segmented region based on single sensor data, com-

pared this estimate to image truth, and tabulated the results. The single-sensor decision

criterion was identical to that used in the multiple sensor class estimation process. How-

ever, only information obtained from one sensor was used to make the single sensor class

estimate.

The image memory held useful versions of the images as they were computed,

avoiding the need to recompute them later. In the simulation environment available for

this research the image memory consisted of memory arrays in a general purpose com-

puter. Information retained in the image memory included the raw and segmented FLIR

images, the segmented range image, and two useful intermediate images arising from the

range image segmentation process, called the smoothed range image and the error image.

The distinction is drawn between the image memory and the data buffer because the

storage requirements for image memory are much larger than those of the data buffer.

The data buffer also held useful information which needed to be accessed subse-

quent to the process through which the information was obtained. Information in the

data buffer consisted of the feature values and current estimates of the class conditioned

probabilities for all segmented regions, and information required to geometrically regis-

ter regions in the images.

The multiple sensor processes consisted of geometric registration of segmented

regions between the images, measurement of the correspondence feature, obtaining infor-

mation to resolve the joint spatial occupancy of segmented regions in both images in the

single decision (SD) algorithm, and performing multiple sensor class estimation. Inputs
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to the multiple sensor process block consisted of the contents of the image memory, the

current estimate of the class-conditioned probabilities for each segmented region, and

geometric registration information in the form of the common pixel. As output, this

block provided the tabulated results of three multiple sensor decision algorithms: (1) the

FLIR looking into range algorithm (FLIR/Range); (2) the range looking into FLIR algo-

rithm (range/FLIR); and (3) the SD algorithm.

2.2 Conclusions

The architecture shown in Figure (2-1) provided a general and useful partitioning of

functions in the multiple sensor target detection problem. Figure (2-1) is a detailed ver-

sion of the proposed architecture shown in Figure (1-1). Refinements to Figure (1-1)

shown in Figure (2-1) are the result of knowledge gained in the course of this project.

This architecture allowed the implementation of the functional blocks to be addressed in

relative isolation from the larger problem. Additionally, the architecture is, in principle,

quite generally applicable. Variations on this architecture may appear in future systems.

The strength of this architecture derives from the separation of sensor-dependent

processes and multiple sensor processes for non-pixel registered imagery. Sensor-

dependent processing exploited information available from each sensor using algorithms

developed specifically for that sensor. Multiple sensor processes were based on the out-

puts of the sensor-dependent processes, and multiple sensor information was obtained

through the registration of interesting regions between the images.

In an operational system development the choice of whether to use pixel registered

sensors or non-pixel registered sensors lies ultimately with the system designer. Pixel

registered systems admit greater sophistication in the low level multiple sensor processes

(for example, Duda et al, 1979a; Haskins, 1988) than can be accomplished using non-

pixel registered sensors. Greater sophistication in these processes may contribute to

improved performance, but this point has not been demonstrated through comparative

studies. Non-pixel registered systems, in principle, would allow greater scene coverage
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than an otherwise equivalent set of sensors which were pixel registered through use of a

shared aperture. Greater scene coverage in a non-pixel registered system would result

from careful design of the sensor scan patterns to cover different scenes until multiple

sensor information was required to make a decision.
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11. FUR Image Segmentation

3.0 Introduction

The problem addressed in this chapter is that of developing a technique to automati-

cally find potential target-bearing regions in Forward-Looking Infrared (FLIR) sensor

images. This process, called segmentation, had the goal of extracting the targets from the

images as accurately and reliably as possible, while rejecting as much of the remainder of

the images as possible.

The philosophy of FLIR image segmentation was to extract regions, or "blobs",

whose edges and interiors closely corresponded to the visible bounds and interiors of the

targets in the data base. Ideally, each target in a segmented image would have consisted

of a region containing only target pixels, and no non-target regions would appear in the

segmented images. The ideal case would have been quite difficult to achieve, and may

be impossible to obtain. However, an algorithm which provided high quality segmenta-

tion was developed.

The algorithm developed was based on the following observations about the targets

in the images: (1) the targets in the data base generally had a higher apparent temperature

than the background, and thus appeared brighter than the background in the FUR

images; (2) the targets tended to be differentially heated due to operation and sun warm-

ing; and (3) the targets occupied a small fraction of the total pixels in the images. These

observations indicated that target pixels and background pixels could be partitioned

based on brightness, and suggested an adaptive method for performing this partitioning.

The segmentation algorithm was based on a threshold operation, followed by a set of

heuristic operations. The threshold was selected adaptively based on an automated

inspection of the histogram of the median filtered version of the image. A set of heuristic

operations were applied which were designed to reject additional non-target pixels
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passed the threshold, and to recover a small number of target pixels which were inadver-

tently lost.

The algorithm was applied to a data base of 97 FLIR images found suitable for mul-

tiple sensor research, and scored. Optical parameters for the sensor, and data collection

methods are discussed in Appendix A. The data sets and file names from the Army

Center for Night Vision and Electro-Optics (CNVEO) June 1987 Multisensor Data Col-

lection are listed in Appendix B. Appendix B also contains a discussion of criteria used

to select FLIR and range image sets for the sensor fusion research.

Five sections remain in this chapter. Background pertinent to the segmentation

algorithm is provided in the next section. This is followed by a discussion of the algo-

rithm and its implementation. Performance of the algorithm on the data base and the

scoring technique are then discussed. Limits to applying this algorithm are presented

next. The final section contains conclusions drawn from the FUR segmentation work.

3.1 Background

FLIR images are two-dimensional arrays of numbers where each entry is a measure

of the relative apparent temperature of the scene element sampled (Lloyd, 1975:1-4).

Thus, to sense the presence of a target in FUR imagery it is necessary that an observable

apparent temperature difference exist between the targets and their immediate back-

ground (Lloyd, 1975:8). This criterion was largely met by the targets in the data base.

Partitioning of the pixels in an image into two classes based on brightness is often

cast as the textbook problem of selecting a threshold (Gonzalez and Wintz, 1987:354-

367). This approach was adopted here. In the present case, the two pixel classes were

potential target and background.

When the brightness distributions of the two classes are known an optimal threshold

may be selected (Gonzalez and Wintz, 1987:360-363). Unfo "unately, no model for

predicting these brightness distributions was known to exist. The problem was further
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distinguished from the textbook case in that the brightness distributions for potential tar-

get and background regions were not separated by a poorly populated band of brightness

levels.

A heuristic approach to selecting a threshold grounded in the observations about the

brightness distributions of the targets and the background was adopted. The threshold

selection algorithm and subsequent processing are discussed in the next section.

3.2 Segmentation Algorithm

The segmentation algorithm developed for FUR images is shown in block diagram

form in Figure (3-1). Raw FUR images were initially median filtered to smooth spurious

noise. The histogram of the median filtered image was then computed. A threshold

computation algorithm was applied to the histogram. The threshold was applied to the

median filtered image, creating an intermediate image called the post-threshold image.

Heuristics were applied to the post-threshold image to remove unwanted pixels and

recover a small number of pixels inadvertently lost during earlier stages of the algorithm.

Typical FLIR images from the data base are shown in Figure (3-2). Figure (3-2a)

shows, from left to right, and M60A tank, an M 113 armored personnel carrier (APC), a

sandpaper covered target board placed for sensor calibration purposes, and a 2.5 ton

truck. These targets were at a range of approximately 1070 m, and were viewed with the

narrow field-of-view of the sensor. Figure (3-2b) is a wide field-of-view image which

contain4.several targets: three clearly visible targets, two 2.5 ton trucks and one M60A

tank at a range of 860 m; an M60A tank nearly matched in brightness to that of the back-

ground, lying to the left of the targets just mentioned, also at 860 m; and three targets

appearing as an approximately equally-spaced array of three small bright spots, which

were at a range of approximately 1700 m.

The histogram for the median filtered version of the image shown in Figure (3-2a) is

shown in Figure (3-3). Figure (3-3a) shows the histogram on a scale sufficient to view
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Figure (3-1). Block diagram of the FLIR image segmentation algorithm.

the entire histogram. Figure (3-3b) shows the same histogram, but with the vertical axis

stretched to show the details of the relatively poorly populated levels.

The observations about the targets discussed in Section 3.0 contributed directly to

the formulation of the segmentation algorithm. The observation that the targets were

generally brighter that the background indicated that a threshold could be used as the ini-

tial step in segmentation. The observations that the targets tended to occupy a small frac-

tion of the image and that they tended to be differentially heated led to the hypothesis

that the target brightness levels were contained in the "rough" region of the histogram.

Roughness, in this context, is the property of the slope of the histogram to change signs

frequently. Experiments demonstrated this hypothesis to be correct.
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(a)

Figure (3-2). Typica] images from the FUIR image data base.
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Figure (3-3). Histogram of the median filtered version of the images shown in
Figure (3-2a): (a) full histogram; (b) vertical axis stretched.
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The rule developed to adaptively select the threshold was based on sensing where

the rough part of the histogram began. A change in the sign of the slope of the histogram

was observed by searching the histogram from the image mean value toward the higher

values and noting the first brightness level, i, at which the following condition was met:

H(i+I) >H(i-1): i >Wai (3-1)

where H (i) is the histogram value at brightness level i, and ti is the mean brightness of

the image. Let this level be denoted i 1. An additional brightness level, i 2, was obtained

by observing the first brightness level at which the following condition was met:

(H (i+I) - H(i-1)) > AH: i > g~i (3-2)

where AH is an arbitrary parameter which was set at AH = 15 for the entire data base.

The threshold was then set by the rule:

(i I + i2)
iTH = -----2- (3-3)

where iTH is the threshold chosen. This rule selected a threshold of iTH = 60 for the his-

togram in Figure (3-3). Thresholds between 52 and 75 were selected for images in the

data base. A default threshold of iTH = 58 was provided for the rare case when the above

rule failed to choose a threshold.

The threshold operation passed a pixel in the median filtered image to the post-

threshold image if the brightness of the pixel was greater than the threshold. Pixels in the

median filtered image less than or equal to the threshold were set to zero in the post-

threshold image.

Binarized versions of the post-threshold images for the images shown in Figure (3-

2a) and (3-2b) are shown in Figures (3-4a) and (3-4b), respectively. These results were

typical of the data base. Targets were generally retained by the threshold operation while

the bulk of the non-target pixels were rejected.

33



(a)

(b)

Figure (3-4). Post-threshold images for the FURimages shown in Figre (3-2).
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A set of heuristic operations were applied sequentially to the post-threshold image

to complete segmentation. In the implementation, the input to each operation was the

output of the previous step.

The first heuristic operation was to reject isolated collections of pixels in the post-

threshold image which were 3x3 pixels, or smaller, in extent. This step eliminated spuri-

ous collections of pixels which were far too small to be of interest.

Regions possessing 35 pixels or less were also rejected. This operation resulted in

the loss of the targets at 1700 m range in Figure (3-2b), which were viewed with the wide

field-of-view of the sensor. However, this loss was acceptable since no suitable range

sensor data was available for these targets.

Small dropouts of up to 3x3 pixel extent were then filled in all remaining connected

regions. Filling such dropouts recovered internal target pixels lost through the threshold

and provided well-filled regions for the subsequent processes. Dropouts were filled with

the value of the corresponding location in the median filtered image.

Next, a process to eliminate tenuous connections to regions was applied. Tenuous

connections to regions were thin strings of pixels, a few pixels wide, attached to larger

regions and sometimes connecting two or more regions. This operation was designed to

eliminate these connections, rejecting some non-target pixels which passed the threshold.

Each region of sufficiently large vertical extent, defined as seven or more pixels,

was contracted by one pixel. The contraction was accomplished by locating every pixel

in a region which had a zero-valued pixel as a nearest neighbor, and then setting these

pixels to zero. Thread-like connections to regions one or two pixels wide were elim-

inated by this process. Subregions 3 x 3 pixels or smaller, which were fractured as a

result of the contraction operation, were then rejected. The remaining regions were then

dilated by one pixel using the reciprocal of the contraction operation.

Tenuous connections to regions with vertical extent of six pixels or less required

special attention, since successively contracting and dilating a narrow region typically
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resulted in great loss of shape detail. In this case, tenuous connections were fractured by

examining the 3x3 pixel nearest neighborhood of each non-zero pixel in the region. If

two or fewer non-zero pixels were found in the 3x neighborhood, excluding the center

pixel, then the center pixel was set to zero.

Regions possessing a length-to-width ratio greater than a specified upper bound

were rejected next. This was reasonable, since the subsequent steps sought to rejoin

regions rather than fracture them. The upper bound on length-to-width ratio was liberally

set at 15.0. None of the targets in the data base actually possessed a length-to-width ratio

as great as 15.0. However, the FLIR sensor was oversampled in the horizontal dimension

by a factor of two (see Appendix A), doubling the length-to-width ratio of the targets.

Also, thermal coupling of the lower surfaces of targets to the ground often reduced the

vertical extent of the segmented targets, increasing the length-to-width ratio.

An operation to reconnect regions which were inadvertently fractured by the previ-

ous steps was then applied. Inadvertent fracturing was an occasional problem, for exam-

ple, at the point where the cab of a 2.5 ton truck joined the box. This region tended to be

dimmer than other parts of the truck, and also tended to possess much less vertical extent

than the rest of the target. Hence, both the threshold operation and the operations to

eliminate tenuous connections could fracture trucks at this point.

A window of the shape shown in Figure (3-5) was used to recover these pixels. The

center pixel in this window was passed over every zero-valued pixel in the current ver-

sion of the segmented image. If at least one pixel on each side of the window was found

to be non-zero, then the center pixel was set to the value of the corresponding position in

the median filtered image. While this operation served to reconnect regions, it also

sometimes added a few additional pixels to regions which were not inadvertently frac-

tured.

In the final step of the heuristic operations, regions which possessed length-to-width

ratios larger or smaller than the range allowed for the targets of interest were rejected.

36



Figure (3-5). Window used in recovery of lost target pixels.

Bounds were set loosely: the lower bound was set at 0.8, and the upper bound was again

set at 15.0.

The results of applying these heuristics to the images of Figures (3-4a) and (3-4b)

are shown in Figures (3-6a) and (3-6b), respectively. Figures (3-6a) and (3-6b) constitute

typical examples of the output of the segmentation algorithm.

Figures (3-6a) and (3-6b) show that the segmentation algorithm was an imperfect

selector of targets. In Figure (3-6a) all three targets were passed by segmentation, along

with three non-target regions, including the target board. In Figure (3-6b) two trucks and

one tank were passed, along with several non-target regions. The tank which was

merged with the background in brightness in Figure (3-2b) was lost during segmentation

due to its proximity with an equivalently bright section of the background.

Figures (3-6a) and (3-6b) illustrate the need for further processing of segmented

images before making target detection declarations. The post-segmentation target detec-

tion problem was that of separating segmented target regions from segmented non-target
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(a)

(b)

Figure (3-6). Firuil se-mented version of the images shown in Figure (3-2).
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regions.

While the algorithm described above was closely tuned to the sensor and data base

at hand, the general philosophy of segmentation embodied by this algorithm may be

applicable to other problems. The initial operation, in this case a threshold, sought to

reject as many background pixels as possible, while both fracturing the targets from the

background and keeping as many target pixels as possible. Succeeding steps were

designed to eliminate still more unwanted pixels based on insight into the types of image

artifacts and targets present. Finally, an effort was made to recover a small number of

pixels inadvertently lost during earlier stages of the algorithm.

3.3 Algorithm Performance and Scoring Method

This algorithm was applied to a data base of 97 FLIR images composed of 84 nar-

row field-of-view images and 13 wide field-of-view images found suitable for multiple

sensor research. The data base contained 279 visible targets (not including the targets at

1700 m range imaged with the wide field-of-view), of which 254 were passed by the seg-

mentation algorithm. Thus, targets were passed by segmentation at a rate of 0.910.

There were 320 non-target regions passed by the segmentation algorithm. The 254 tar-

gets were contained in 230 segmented target regions, for reasons explained below. Thus,

the rate of segmented non-target regions per segmented region was

320/(230 + 320) = 0.582. Normalized on a per square degree of image space basis, the

false alarm rate was 0.181 per square degree.

Correct target segmentations were scored if a target visible to an observer in the raw

FLIR image appeared to be accurately segmented. In several cases in the data base a

tank was occluding a jeep, with the result that both the tank and the jeep were segmented

as a single connected region. Bounds between the tank and the jeep could not be visibly

determined in these cases. For the purposes of computing the segmentation score given

above, these instances were scored as two correct target segmentations for two target

opportunities.
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False segmentations were scored for every region appearing in a segmented image

which did not correspond to a target. Normalization of the false segmentation rate on a

per segmented region basis provides an estimate of the likelihood that a segmented

region did not contain a target. Normalization of this measurement on a per square

degree basis yields an estimate of the algorithm performance as a function of the angular

size of the image.

3.4 Limits of the Algorithm

Targets must be significantly brighter than the background of the image to be seg-

mented by the present algorithm. The histogram search technique for choosing a thres-

hold mandates this condition for successful segmentation, though the targets may not

always meet this requirement. This condition was largely met in the data base. How-

ever, in the instances where the target and the background were at nearly the same bright-

ness level, the algorithm typically failed to segment the target.

Also, targets which are closely spaced, or occluding, will typically not be seg-

mented by this algorithm. No operators were developed which would accomplish this

task.

3.5 Conclusions

The segmentation algorithm described extracted potential target-bearing regions

based on pixel brightness and heuristic operations. This algorithm was found to be quite

useful for the purposes of this research project.

The threshold selection technique used is interesting in that though it is not an

optimal threshold, it chose an adequate threshold for a large fraction of the images

presented. This threshold selection technique may find application in a fielded system

having some version of the present algorithm available as a segmentation option when

appropriate conditions exist.
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Better segmentation heuristics would have contributed to slightly more accurate

segmentation of some targets. In particular, an alternative to the method used here for

reconnecting inadvertently fractured regions would have been useful if it did not have the

effect of blurring some targets. The effect of the blurring induced by this operator was

negligible for the multiple sensor target detection work conducted here. However, even a

small amount of blurring may affect future target classification work using the segmented

images developed here.
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IV. Range Image Segmentation

4.0 Introduction

The problem discussed in this chapter is that of automatically extracting regions

bearing targets in absolute range images. This process, called segmentation, had as its

goal the reliable and accurate extraction of targets from range images, while rejecting as

much of the background as possible.

The range sensor used to provide the data base was an active laser radar (Due and

Peterson, 1982; Nettleton and Smiley, 1987; Nettleton, 1989). The targets consisted of

tactical vehicles at ranges of 860 m to 1700 m. The optical parameters of the sensor and

the data collection methodology are described in Appendix A. The data sets and file

names from the Army Center for Night Vision and Electro-Optics (CNVEO) June 1987

Multisensor Data Collection (Nettleton and Smiley, 1987) used in the data base are listed

in Appendix B. Appendix B also contains a discussion of the criteria used to select FLIR

and range image sets for the multiple sensor data base.

The segmentation algorithm developed was based on the observation that the sur-

faces of tactical targets are reasonably well modeled as collections of small, approxi-

mately planar patches of varying orientations. The natural backgrounds surrounding the

targets generally did not possess this quality. Hence, a planarity test was found to be

well suited for the initial, and most critical step in the segmentation algorithm.

The critical parameter of the segmentation algorithm was a threshold on the abso-

lute error associated with a plane fit to small areas on the Cartesian surface implied by a

range image. A good estimate for this parameter was shown to depend upon readily

obtainable range imaging and sensing parameters. Surface orientation information was

used only to the extent that the computed plane parameters contributed to the absolute
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error associated with each plane fit.

The approach taken to segmenting the targets is distinct from other approaches

using planar surface extraction for segmentation (Milgrarn and Bjorklund, 1980; Duda et

al, 1979a; Hoffman and Jain, 1987; Besl and Jain, 1988) in that surface orientation was

not explicitly used in the segmentation process. This is due to the fact that, while the tar-

gets are well-represented as collections of planar patches on a small scale, the orientation

of these patches varies widely across real targets. Explicit processing of surface orienta-

tion information was found to be unnecessary for this application.

Figures (4-1) and (4-2) provide an illustration of the difficulties associated with

using small-scale surface orientation information for segmentation. Figure (4-1a) is a

range image of a truck, oriented approximately normally to the sensor beam, at a distance

of approximately 1070 m. The standard deviation of range measurements in the raw

range image was estimated, using a noise model for the sensor, at approximately 27 cm,

and the linear separation of samples across the truck was approximately 5.4 cm. The raw

range image was smoothed using a 3x3 pixel median filter followed by a 3x3 pixel

averaging filter to produce the image in Figure (4-1a). A modulo 256 computation was

applied to every range pixel for display purposes, allowing a range image with dynamic

range much greater than eight bits to be shown on an eight bit display. This presentation

technique was applied to the range images shown in this dissertation. Displaying images

in this manner injects a cyclical appearance into the image which is not present in the

raw data. Figure (4-1b) shows a silhouette of the results of applying the segmentation

algorithm to this image.

When planes of the parametric form:

z =ax +by +Po (4-1)

are fit, in the least-squares sense, to the Cartesian coordinates of all 3x3 collections of

range image pixels, an estimate of the parameters a, b, and p, is computed. The parame-

ters a and b contain the interesting surface orientation information in this case. Figure
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(a)

(b)

Figure (4-1). (a) Smoothed range image of 2.5 ton truck, broadside view; (b) silhouette
of final segmented version of image in Figure (4-1a).

(4-2a) shows a plot of b versus a for the pixels in a 128 column by 64 row window of

the range image around the truck, with the truck pixels excluded. Figure (4-2b) shows a

similar plot, but in this case b versus a is plotted for only the truck pixels. Considerable

overlap exists between the surface orientations found for the truck and the surface orien-

tations found for the background. Also, the a and b parameters for the truck pixels were

found to vary over a significant range of values, approximately -25 < a < 25 and

-40 < b < 40. This is a larger spread of values than would be expected if a real truck

could be reasonably modeled as a collection of a few truly planar surfaces. Approxi-

mately 47% of all pixels in the range image have a and b parameters which fall in this

region of the parameter space. The planarity test passed approximately 12% of the range

pixels, including most of the target pixels, when applied to the image in Figure (4-1a).
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Hence, for the image in Figure (4-la), the planarity test rejected more of the background

than a pixel level segmentation test based on passing pixels in a known section on the

a-b parameter space would have. Segmentation of these images using the information

in the a-b parameter space may be possible, but such an algorithm would need to con-

sider additional information.

The performance of the algorithm developed here shows that explicit processing of

surface orientation information was not required to segment the targets in the data base.

However, experiments conducted using synthetic range images of planes corrupted with

additive, zero-mean Gaussian distributed noise with range-appropriate standard deviation

showed that the surface orientations of planes fit to real planar scene regions were com-

puted with good accuracy. The errors in the a and b parameters of the planes were

found to be approximately zero-mean with standard deviation of less than 1.0 for reason-

able operating conditions. Thus, surface orientation information may be useful in identi-

fying objects which have been found using the present technique.

The remainder of this chapter is organized as follows. Pertinent background is

presented first. The algorithm and appropriate theoretical considerations regarding the

planarity test are then described. This is followed by a discussion of heuristics found

useful in the segmentation process. The performance of this algorithm on the database

and known limits to applying the algorithm are then presented. Conclusions and com-

ments are made in the final section.

4.1 Background

Absolute range images provide a measurement of the three-dimensional position of

the surface elements in a scene in a coordinate system which has the sensor as its origin.

Thus, range image segmentation algorithms typically exploit some property of the sur-

faces of the objects of interest (Duda et al, 1979a; Milgram and Bjorklund, 1980; Magee

et al, 1985; Besl and Jain, 1985; Hofman and Jain, 1987; Besl and Jain, 1988). The philo-

sophy of using some surface property of the targets was adopted in the range image
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segmentation algorithm developed.

Recent work in the area of range image segmentation has emphasized processing

surface orientation and curvature information (Duda, et al, 1979a; Milgram and Bjork-

lund, 1980; Magee et al, 1985; Besl and Jain, 1985; Hofman and Jain, 1987; Besl and

Jain, 1988). Good success has been reported with these techniques for extracting planar

regions in office scenes (Duda et al, 1979a); matching sensed planes to a scene model for

position location (Milgram and Bjorklund, 1980); detection of planar, convex, and con-

cave surfaces (Hoffman and Jain, 1987); and extracting higher-order polynomial surfaces

(Besl and Jain, 1988). A common theme is the extraction and identification of surfaces

in the scene.

The problem of segmenting tactical targets differs from the segmentation problems

addressed in the literature. The philosophical difference between the present segmenta-

tion approach and previous work is that the 'structure' of the scene, in terms of identify-

ing the types and orientations of the major constituents of the scenes, was a matter of

indifference in this project. Rather, a reliable technique was sought for finding targets

and accurately partitioning the target pixels from the non-target pixels. It was found that

an approach which neglected scene .:tructure and surface orientations in favor of a simple

initial test of 'targetness' provided an excellent solution to this problem.

A potential link to the type of surface analysis addressed in the literature exists in

the area of analyzing the targets extracted with the present technique. In particular,

analysis of the surfaces comprising targets may yield useful insight into their structure,

aiding the process of automatically identifying segmented targets. This work was not

conducted in this project, but appears promising.

4.2 Segmentation Algorithm

The segmentation algorithm is shown in block diagram form in Figure (4-3). Raw

range images were smoothed using a 3x3 pixel median filter (Gonzalez and Wintz,
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1987:p162) followed by a 3x3 pixel averaging filter (Gonzalez and Wintz, 1987:pl6l).

An intermediate image, called the smoothed image, was created by this process. The

Cartesian coordinates of each range image pixel were then computed. Planes were fit, in

the least-squares sense, to the Cartesian coordinates of all 3x3 pixel regions in the image.

The plane parameters computed by the plane fitting routine and the absolute value of the

error resulting from the plane fit were associated with the center pixel of the 3x3 region.

An intermediate image containing the absolute error values associated with each pixel

position, called the error image, was created in this process. A range-dependent error

threshold was then applied to the error image such that pixel positions possessing error

less than the threshold were passed, while pixel positions possessing error greater than

the threshold were rejected, creating an image referred to as the threshold image. Heuris-

tics were applied to the threshold image to reject more non-target pixels and to recover a

small number of target pixels. The heuristics included a range-jump test designed to

fracture connected regions containing unacceptable jumps in range.

Median filtering reduced the effects of spurious noise which was present in the

imagery. The averaging filter further smoothed the image and had the effect of reducing

the standard deviation of range measurements by a factor of one third in regions where

range changed slowly (Gonzalez and Wintz, 1987:pl74).

The Cartesian surface implied by a range image was computed in a coordinate sys-

tem which had the sensor as its origin, as shown in Figure (4-4). The z -axis of this coor-

dinate system coincided with the boresight of the sensor, and hence the center pixel of

the image. The (x,y ,z) position of each range pixel in an image was computed using:

x (r,c) = p(r,c )cosOei (r,c )sinOa, (r,c) (4-2a)

y (r,c) = p(r ,c )sinOei (r ,c ) (4-2b)

z (r ,c) = p(r ,c )cosOEI (r,c)cosO, (r ,c) (4-2c)

where p(r,c) is the range value at the image (row, column) position (r,c), and Oaz and

0e1 are the angular displacements of the pixel from the center pixel in azimuth and eleva-
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Figure (4-3). Block diagram of range image segmentation algorithm.

tion, respectively.

Planes of the parametric form given by Equation (4-1) were fit, in the least-squares

sense, to the (x,y ,z) positions of all 3x3 pixel regions in an image, and the absolute error

associated with each plane fit was computed. The equations which must be solved to

accomplish this fit were derived by applying the standard definition of the least-squares

approximation (Burden et al, 1980:pl37) to the plane parameterization in Equation (4-1)

and setting the partial derivatives with respect to a, b, and Po equal to zero. The result

is that the linear system of equations given by:

rA '2 Ex YiV a 1 i r[_Xiyi YYi 2  byi b - yiziJ (4-3)
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Figure (4-4). Sensing geometry and coordinate system for range image segmen-
tation algorithm.

must be solved for a, b, and p, each time a plane is fit. All sums in Equation (4-3) are

conducted over the nine pixel positions being fit, and Np is the number of points being

fit, in this case, NP = 9. The absolute error associated with a plane fit, I e (r,c) I, is given

by:

e(rc)I = ± lz(r+i,c+j)-ax(r+i,c+j)-by(r+i,c+j)-po 1 (4-4)

The values computed for I e (r,c) I were entered in the (r,c) position of the error image.

The ma i-de of z was generally several orders of magnitude larger than the mag-

nitude of x and y in the data base. Such large disparities in numerical values can cause

inaccuracies in the solution of Equation (4-3) (Burden et al, 1980:pl2-13). To overcome

this difficulty, planes were fit in a translated coordinate system which had the center pixel

of the 3x3 region as its origin. Thus, planes were actually fit to the Cartesian coordinates

given by:

x'(r,c) = (x (r,c) - xo) (4-5a)

y'(r,c) = (y (r,c) - yo) (4-5b)

z '(r,c ) = (z (r,c )-z) (4-5c)
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where (xo ,Yo ,zo) is the (x ,y ,z) position of the center pixel in the 3x3 region.

The effect of this translation on the parameters of a plane may be explored by

assuming a plane has been fit in the translated coordinate system, returning the parame-

ters a, b, and po0 '. Note that the a and b parameters are unaffected by translation of the

reference coordinate system. However, the z -intercept is defined in the translated coordi-

nate system. To recover the z -intercept in the untranslated coordinate system substitute

Equation (4-5) into Equation (4-1):

(z - zo) = a (x - xo) + b (y-yo)+po'

z = ax + by + (po'- axo - by, + zo) (4-6)

Thus, the z -intercept in the untranslated coordinate system is given by:

po = po'- aXo - byo + zo (4-7)

The error associated with the plane fit in the translated coordinate system is exactly that

which would be obtained from fitting the plane in the untranslated system as seen from:

I e I = I (z - zo )-a (x - x, )-b (y - yo)-po' I

1 z -ax -by - (po'- axo -byo +z o )I

= I z - ax - by - po I (4-8)

where the sums are conducted over the nine pixel positions in the 3x3 region. Since the

coordinate system translation has no effect on the parameters of interest, the remainder of

the mathematical formulation of this algorithm is presented in the untranslated coordinate

system.

The planarity test was a threshold operation on the elements of the error image. A

range-dependent threshold on I e (r,c)I, eT (p), discussed in the next section, was com-

puted for every pixel in the range image and applied to create the threshold image,

T(r,c), using the rule:

T(r,c)=fp(r,c), Ie(r,c)I <eT(p) (49)

otherwise
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This operation typically rejected a large fraction of the background pixels, while retain-

ing the target pixels. The binarized image shown in Figure (4-5) illustrates the result of

applying the error threshold operation to the image in Figure (4-1a). The functional

dependence of the error threshold, er (p), on range, p, was of considerable interest. This

dependence admits a mathematical analysis, which is presented in the next section.

Figure (4-5). Silhouette of image resulting from application of the error threshold
to the image in Figure (4-1a).

Equation (4-9) neglects the values of the parameters returned by the plane-fitting

algorithm, except as they contribute to computing the absolute error, I e (r,c) I. Thus, the

small-scale planarity of the vehicles was exploited, rather than some property of the sur-

face orientations. It is interesting to note that while man-made vehicles possess small-

scale planarity, the natural backgrounds viewed in the data base largely did not possess

this quality.

Heuristics were applied to the threshold image, T (r ,c), as the final step in segmen-

tation. The heuristics were designed to reject more non-target pixels and to recover a

small number of target pixels.
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4.3 Error Threshold Selection

The error threshold discussed above was developed by assuming that the range

measurements were corrupted with zero-mean, additive Gaussian noise:

pn (r,c) = p(r,c ) + n (r,c) (4-10)

where p. (r ,c ) is a noisy range image element, p(r,c ) is the actual range of the scene ele-

ment, and n (r,c) is the additive noise. The random variable n (r,c) was assumed to

behave as a Gaussian distributed random variable with zero mean and range-dependent

variance, a,, (p).

In the following subsections it is shown that under certain geometrical conditions

the mean of I e I, P, and the standard deviation of I e I, 0 e, computed for planar scene

regions, are approximated well as functions of only ,, (p). This is accomplished by exhi-

biting the geometrical conditions under which the error, I e I, associated with fitting a

plane to the noise-corrupted view of a planar scene region is approximated well as a

function of the absolute value of the noise associated with the range measurements for

that region, In I. A useful rule for choosing the error threshold, eT(p), based on this

result is presented. Physical considerations for estimating cyn (p) based on sensor param-

eters and viewing conditions are then discussed.

Numerical experiments were performed to evaluate the accuracy with which plane

parameters were computed using noise-corrupted range images of synthetically produced

planes. Synthetic range images of planes, 32x32 pixels in extent, were corrupted with

zero-mean, additive Gaussian noise with range-appropriate standard deviation (see sec-

tion 4.3.3). The plane parameters in the synthetic image were set at a = b = 0, and Po

was varied. After corruption, the images were smoothed with a 3x3 averaging filter.

Planes were fit to the Cartesian coordinates of 3x3 pixel regions of these images, and

mean and standard deviation of the errors of the computed plane parameters were exam-

ined.
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Results of the numerical experiments are shown in Table (4-1). In Table (4-1)

oe(a), cy(b), and oa (po) are the standard deviation of the errors on a, b, and Po,

respectively. Errors on the plane parameters a and b were found to be approximately

zero-mean with standard deviation of less than 0.6 under the conditions of interest.

Errors on the parameter P, were also found to be approximately zero-mean, with stan-

dard deviation of less than 1.4 m. Varying the parameters a and b up to a = b = 40 did

not impact these results. No experiments were conducted to determine where, or if, the

errors on plane parameters became large. It was concluded that for the present applica-

tion, the least-squares plane fitting to noisy range images approximated the actual param-

eters of the planes observed with sufficient accuracy.

Table (4-1). Error statistics for plane parameters.

PO oe (a) Ye (b) oe (Po)
(m) (m)

800 0.43 0.51 0.50
1000 0.46 0.51 0.68
1200 0.43 0.49 0.72
1400 0.47 0.53 0.95
1600 0.51 0.55 1.20
1800 0.45 0.51 1.25
2000 0.47 0.56 1.34

The standard deviations of the error on a and b in Table (4-1) are estimates of the

accuracy with which surface normal information may be obtained from noisy range

images. The spread of values for a and b observed for the broadside truck of Figure (4-

] a), shown in Figure (4-2b), ma, now be interpreted. In particular, the region of a -b

parameter space occupied by the truck pixels, approximately -25 <a < 25 and

-40 < b 540, is seen to be due primarily to variations in the orientations of small surfaces

on the truck, rather than as a result of sensor noise.
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4.3.1 Derivation of g. and o for Planar Scene Regions

Presume that a region in the scene has a spatial extent of 3x3 pixels or more, and is

planar with parameters given by:

z (r,c) = ax (r,c) + by (r,c) + p, (4-11)

where x (r,c), y (r,c), and z (r,c) are the actual Cartesian coordinates of the nine range

pixels in the 3x3 region and P, is the z-intercept of the plane. Presume further that the

range sensor has observed this region and provided noise-corrupted estimates of the

range to this region given by Equation (4-10). The actual Cartesian coordinates of the

scene points sampled, p(r ,c), are given by Equations (4-2).

It follows from standard geometric considerations that:

p(r,c) = [x2(r,c) +y 2(r,c) + z 2(r,c)]A (4-12)

and hence:

pn(r,c)= [x2(r,c)+y2(r,c)+z 2(r,c)]' + n(r,c) (4-13)

It follows from Equations (4-2) and (4-13) that for the planar region being considered:

PN = [(pcosOei sinGa, )2+(psinOei )2+(a pcosOel sinOz +b psinOe +Po )2]1A+n (4-14)

where the (r ,c) dependence of the variables has been suppressed. If either of the follow-

ing conditions is met:

psin8az = psinOl = 0 (4-15a)

PO 2>>(a psin8a )2, (b psinO )2 (4-15b)

then Equation (4-14) may be simplified to

p, (r,c ) = Po + n (r,c) (4-16)

To bound the values for a and b under which Equation (4-16) is a good approxima-

tion we examine Equation (4-15b). Setting po = p in Equation (4-15b) yields:

>> a2, I >>b 2  (4-17)
sin2 in5
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Under the most severe conditions in the data base, specifically, lowest resolution (0.2

mr), at the edges of the largest range image (256 lines by 511 columns), Equation (4-17)

yields:

Ia I <<19.5, lb I <<39.0 (4-18)

As the angular displacement from the center of the image decreases, Equation (4-17)

becomes less restrictive. For example, at the highest resolution (0.05 mr) at a point half-

way from the center of the largest image to any comer of the image, Equation (4-17)

yields:

I aI << 156.3, l b I << 312.5 (4-19)

These conditions become progressively less restrictive as the center of the image is

approached. It was concluded that the condition in Equation (4-17) was well satisfied in

the present case, and did not impose a severe restriction to the approximation in Equation

(4-16).

Under the conditions in Equation (4-17), 1 e I may be approximated by:

lel = ± ± Izn(r+i,c+j)-anxn(r+i,c+j)-bnyn(r+i,c+j)-poI
i=-lj=-

= ± ± Ip,(r+i,c+j)-pol
i =-1) =-1

- ± ± In(r+i,c+j)1 (4-20)

where x,, y, and z,, are the noise-corrupted Cartesian coordinates obtained from substi-

tuting Pn from Equation (4-10) into Equations (4-2), and an, b, and po. are the cor-

rupted plane parameters recovered from fitting planes to the noisy data. Equation (4-20)

is a good approximation for pixels with an and bn satisfying Equation (4-17), and where

po.=po. Numerical experiments, discussed previously, showed that an and b,, were, on

average, accurate estimates of a and b. Thus, it was concluded that the condition that an

and bn satisfy Equation (4-17) was not restrictive. The condition that po=Po is a less

elegant approximation, which was found to be acceptable for this application. The effect
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of all approximations made in obtaining Equation (4-20) on the error threshold is dis-

cussed in the next section.

The mean of I e 1, t e, is computed by making the assumption that the n (r,c) in

Equation (4-20) are statistically independent, hence:

Ite =9E(In(r,c)I} (4-21)

Based on the previous assumption that n (r,c) is a zero-mean, Gaussian random

variable with standard deviation a, (p), the probability density function (PDF) of n (r ,c)

is:

E2

pe () = O e-- P (4-22)

Computation of the PDF of I n (r ,c ) I, p In I (y) from Pn () is a standard problem in the

theory of random variables [Papoulis, 1965:pl 311, and only the result is presented.

p I nI(Y,) = (2)-- /e- 'P u (Y) (4-23)
(Y" (P)

where U (y) is the unit step function. A numerical value for gt may be obtained by

integrating:

e 9E{In I) 9 iYPin i(Y) dy

= j On (p) = 7.181Ian (p) (4-24)

The standard deviation of I e I, Oe, is now derived. This accomplished by exhibit-

ing the variance of I e I, (Ye 2, and taking the square root of the result. Define:

ae 2 =E(Ie 12} -Ite 2  (4-25)

Thus, to compute a 2 it remains to exhibit E( I e 12):

Efle 12} =E(,. I nIn(r+i,c+j)1)2} (4-26)
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To make the succeeding argument more compact, the nine n (r,c) in Equation (4-20) are

now enumerated sequentially from I to 9, n 1, n2, •n" , n9. Equation (4-26) may then be

expressed:

E(I e 12) = E((_ I ni 1 )2)

=E((1n II + In 2 1 + + Ing1) 2J

= E{t I ni 12)+ E{ ___ Ini IInj 1,;j} (4-27)

Since the ni are assumed to be independent the I ni 12 are also independent, hence:

E(leI 12) = 9E(Ini 12) + 72E2(Ini 1} (4-28)

The quantity E{ I ni 12) may be found directly:

E{IniL 12) = f 22 X)- h e- UCy)dy

= a 2(p) (4-29)

Thus, ae 2 is given by:

ye 2 = (90n 2(p) + 72 2 ]jn 2(p)) - (7.181cn (p))2

= 3.270a 2(p) (4-30)

and the standard deviation of I e I is given by:

Oe = 1.808yn (p) (4-31)

4.3.2 Error Threshold

In the previous section estimates for ge and ae were derived for planar scene

regions, subject to certain approximations and geometrical constraints on the orientation

of the planar surface. For scene regions which were planar and satisfied Equation (4-17)

it was expected that the observed values of I e I would behave well in a statistical sense,

possessing an ensemble mean of approximately, p, and standard deviation of approxi-
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mately, a. Nonplanar scene regions and planar regions violating Equation (4-17) were

not expected to provide values for I e I with the statistics derived in the previous section.

In fact, I e I was often found to be quite large for such regions. Planar regions of the

scene which satisfy Equation (4-17) were separated from the nonplanar regions of the

scene by using a threshold on I e I.

Using the approximation in Equation (4-20), it is apparent that I e I is a random

variable formed from the sum of nine random variables. Thus, by the central limit

theorem, the PDF of I e I approaches that of a Gaussian random variable with mean, gte,

given by Equation (4-24), and standard deviation , Oe, given by Equation (4-31).

The functional form of the error threshold used was:

eT (p) = ge + Kae (4-32)

Using the Gaussian approximation of the PDF of l e I, K = 1.96 will pass approximately

95% of the pixels resulting from planes in the scene when the threshold of Equation (4-9)

is applied [Papoulis, 1965:p 65].

An estimate of the standard deviation of the range measurements, oF, (p), was

required to use Equation (4-32). A model of sensor performance was implemented

which predicted this quantity based on estimates of the sensor operating conditions. The

estimates of Y,, (p) were reduced by a factor of 0.333 to account for the effect of passing

a 3x3 averaging filter over the image prior to fitting the planes. Physical considerations

for this model are discussed in the next section.

Equation (4-32), with ic = 1.96, was used to set the error threshold for the entire data

base. Figure (4-6) shows the range dependence of the error threshold used on the data

base. The error threshold used to compute the binarized threshold image in Figure (4-5)

was computed in this fashion. The majority of the truck pixels were passed by this

operation, as were some smaller collections of non-truck pixels scattered around the

image. This result was typical of the algorithm performance on targets at this range.
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Figure (4-6). Error threshold as a function of range.

Equation (4-32) gives a numerical value for the error threshold of

eT(p) = 13a,, (p) (4-33)

with [3 = 3.57, when all contributions to the error threshold are included. Other investiga-

tors used empirical means to arrive at a value of 3 = 2.5 for a similar error-of-fit metric

(Besl and Jain, 19 88 :pl 7 9 ).

The cumulative effects of the approximation leading to Equation (4-20) were

explored numerically. Synthetic range images of planes, 32x32 pixels in extent, with

a = b =0, were corrupted with zero-mean, additive Gaussian noise with range-

appropriate standard deviation (see section 4.3.3). The image was then smoothed with a

3x3 averaging filter. Planes were fit to the resulting image, and the following quantities

were computed: (1) the mean ., and standard deviation, qe of the absolute error associ-

ated with the plane fit; and (2) the standard deviation of the range errors in the smoothed
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image, a;. The error threshold was computed in two ways: (1) using the observed values

for p, and ae in Equation (4-32); and (2) using the value obtained for Y, in Equation

(4-33).

Table (4-2). Comparison of error thresholds.

PO eT (actual) e" (used)
(M) (M) (M)

800 0.67 0.79
1000 0.85 0.94
1200 0.99 1.08
1400 1.19 1.37
1600 1.47 1.61
1800 1.66 1.69
2000 1.66 2.07

Results of this experiment are shown in Table (4-2). In Table (4-2), eT (actual)

denotes the error threshold value obtained using the actual values of Pt and 0 e in Equa-

tion (4-32); eT (used) denotes the error threshold value which would have been used in

the segmentation algorithm at the given range, obtained by using a,, in Equation (4-33).

Table (4-2) shows that the method for estimating eT(p) developed here consistently

over-estimated the actual value which would have been obtained had precise values for

I'e and a. been available. The average magnitude of the over-estimate in Table (4-2) is

12.7%. This was an acceptable result, since the values for I e I observed for non-planar

scene regions were, on average, much larger than the values for I e I observed for planar

scene regions.

4.3-3 Physical Considerations for or(p)

The sensor used to collect the data base was a laser radar which used heterodyne

detection. The sensitivity and signal-to-noise ratio performance of such systems, and

their impact on ;,, (p) is known (Due and Peterson, 1982). A detailed discussion of this

topic is beyond the scope of this dissertation. The functional form of a,, (p) and the

61



important parameters affecting this quantity are now discussed.

For systems of the type used here, a. (p) depends on the signal-to-noise ratio

presented to the signal processor, with the functional form:

Y.(p) = VC[8M (S IN)p ]-l(4-34)

where vc is the speed of light; f. is the modulation frequency, fm = 8 MHz; 8 is a loss

factor 8 = -8 dB; M is the number of samples integrated in the receiver, M = 2; and

(S/N)p is the ratio of signal power to noise power output by the detector (Nettleton,

1989). Numerical values for (S /N)p are given by:

(S/N)p = iP (a/7x XRcIla (4-35)h vB XRc T+ p2

where 11 is the system efficiency, with a maximum value of 11 = -28.5 dB; P is the

transmitted power, P = 7.5 W; a is the reflectivity; hv is the photon energy; X is the

wavelength, X = 10.6 micrometers; Rc is a constant distance, R, = 561.66 m; p is the

range to the scene element; and T1a is the atmospheric losses (Nettleton, 1989). Combin-

ing Equations (4-34) and (4-35), and substituting constants yields:

a,. (p) = 6.797x10-7 Ti010a -I (4-36)Rc + p2(-6

when ar, (p) , Rc, and p are expressed in meters.

Estimates of system efficiency, TI , atmospheric transmission, la, and nominal scene

reflectivity, a were required to obtain numerical values from Equation (4-36). Values

used were: Ti = -32 dB, 71a = 1.0 dB/km, and a = 0.02. These values yield the depen-

dence of a,, (p) upon range shown in Figure (4-7). This estimate of the range dependence

of a. (p) was used as the input to Equation (4-33) to obtain an error threshold for the

entire data base. Excellent results were obtained.
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Figure (4-7). Standard deviation of range measurements as a function of range.

4.4 Heuristics for Segmenting Range Images

Figure (4-5) illustrates that additional steps were required to complete segmentation

after the error threshold was applied. Heuristics were used to accomplish this task. The

heuristics used had three objectives: fracturing connected regions in the threshold image

which contained large range jumps, recovering object pixels lost during the error thres-

hold, and rejection of connected regions which were too large or too small to be objects

of interest.

Fracturing connected regions in the threshold image, T(r,c), which contained unac-

ceptably large range jumps was required to account for the possibility that regions pass-

ing the error threshold were connected in the threshold image, but were in fact separated

by a large step in range. A range-jump test was applied to all non-zero pixels in T(r,c).

This test had the form:
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m = max lT(r+i,c+j) - T(r+k,c+l) I

-1 < i j k,l : 1, i *k, j *I, T (e);tO
=0, m >TRj(

S(r,c), otherwise (437)

In words, Equation (4-37) means that for 33 regions around all non-zero pixels in

T (r,c) the maximum delta range for the non-zero pixels in the region, m, was computed.

If m was greater than the range-jump threshold, Tpj, then the center pixel of the 3x3

region was set to zero; otherwise, the pixel was not affected. A useful rule for selecting

TRj was:

TRJ = pOresPm + Wn(p) (4-38)

where 0,es is the resolution of the sensor, Pm is the mean range of the region, and p and

x are multiplicative constants. Values of p = 5.0 and a = 1.0 were used for the data

base.

Where large range jumps existed in the image, particularly at the boundaries of the

objects and the background, planes fit poorly. As a result, the edge pixels of the objects

passed by the preceding steps were lost through the error threshold operation. All

regions remaining after application of the preceding steps were dilated by one pixel to

account for this process.

Regions which were too large or too small were rejected using knowledge of the

absolute size of the objects of interest. The angular extent of each region remaining after

application of the range-jump test was compared to the maximum and minimum possible

angular extent of the family of objects of interest, at the mean range of the region being

examined. Regions failing this test were set to zero. This test neglected the orientation

of the targets, However, this test was found to be quite useful in rejecting non-target

regions.

An additional demonstration of the algorithm is provided in Figures (4-8). Figure

(4-8a) is the smoothed range image of a 2.5 ton truck viewed in the front-passenger side
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aspect. Figure (4-8b) is the silhouette of the threshold image for Figure (4-8a). Figure

(4-8c) is the silhouette of the final segmented version of the image in Figure (4-8a). The

range image segmentation system was an imperfect selector of targets, as nontarget

regions remained after segmentation was complete. However, the reliability and accu-

racy with which targets were typically extracted made this algorithm very useful for the

present work.

4.5 Algorithm Performance and Scoring

This algorithm was applied to a data base of 57 range images found suitable for

multiple sensor research. The data base contained 137 visible targets, of which 121 were

passed by segmentation. Thus, targets were passed by segmentation at a rate of 0.88.

The 121 targets were contained in 124 segmented target regions, for reasons explained

below. There were 276 non-target regions passed by the segmentation algorithm. Thus,

the rate of segmented non-target regions per segmented region was

276/(124 + 276) = 0.690. Normalized on a per square degree of scene space basis, the

false segmentation rate was 1.613 per square degree.

Correct target segmentations were scored if a target visible to an observer in the

smoothed range image appeared in the segmented image. Occasionally, targets were

fractured into two distinct regions due to high noise. Fractured targets were scored as

one correct segmentation for one segmentation opportunity.

False segmentations were scored for every region appearing in a segmented image

which did not correspond to a target. Normalization of the false segmentation rate on a

per segmented region basis provides an estimate of the likelihood that a segmented

region did not contain a target. Normalization of this measurement on a per square

degree basis yields an estimate of the algorithm performance as a function of the angular

size of the image.
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(a)

(b)

(C)

Figure (4-8). (a) Smoothed range image of 2.5 ton truck, front-passenger side
view; (b) threshold image for Figure (4-8a); (c) final segmented version of image
in Figure (4-8a).
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4.6 Limits of the Algorithm

High concentrations of spurious noise on the targets was the primary cause of seg-

mentation failures. Where the spurious noise on a target was too dense for the smoothing

scheme to overcome, the error associated with fitting planes became large. Target pixels,

and occasionally entire targets, were lost through the error threshold as a result. Better

range sensors, with reduced spurious noise, will result in better segmentation perfor-

mance using this algorithm.

Two additional limits on extending the present algorithm are known. First, the tar-

gets to be found must be reasonably approximated as planes on the scale of the area sub-

tended by 3 x3 pixel regions at the ranges of interest. Second, the target surfaces must

not be corrupted by devices which obscure their surfaces. Both of these factors contri-

bute to increasing the error associated with fitting planes to target surfaces, and hence to

reducing the number of target pixels passed by the error threshold.

4.7 Conclusions

A range image segmentation algorithm was described which extracted objects com-

posed of small planar regions in the presence of additive, zero-mean Gaussian noise cor-

rupting the range measurements. The segmentation performance obtained from this algo-

rithm was found to satisfy the needs of this project.

Segmentation was accomplished through use of a planarity test which examined the

absolute value of the error, I e I, associated with each plane fit. A range-dependent thres-

hold on I e I, eT (p), was developed to accomplish this test. It was shown that for planar

scene regions under certain reasonable geometrical conditions, described in Equation (4-

17), the mean of I e I, g, and the standard deviation of I e I, ae, are well-approximated

by functions of the standard deviation of the range measurements, on (p). These results,

contained in Equations (4-24) and (4-31), were very useful since Y, (p) may be estimated

from sensor parameters and operating conditions.
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The Gaussian approximation for the PDF of I e I was used to develop a rule for

selecting eT (p) based on a criterion of selecting approximately 95% of the pixels result-

ing from viewing planar regions in the scene. This rule is exhibited in Equation (4-32).

A model for estimating ao (p) based on physical considerations was developed and

included in the segmentation algorithm. Numerical experiments showed that the approx-

imations leading to the functional expression for the error threshold given in Equation

(4-33) were acceptable for the present application.

The segmentation algorithm selectively extracted regions composed of small areas

which reasonably approximated planes. The orientation of the planes was neglected by

this algorithm. It was concluded that the targets possessed the property of small-scale

planarity, while only small portions of the background had this property.

Surface normal information was not explicitly used by the algorithm, and was not

required for the segmentation process. However, numerical experiments showed that the

surface orientation information was extracted with sufficient accuracy, on average, to

allow useful analysis of the surface orientations of segmented objects. Surface orienta-

tion information may prove useful for identifying segmented objects.
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V. Features and Geometric Registration

5.0 Introduction

'1 -e problems addressed in this chapter are the determination and measurement of

single and multiple sensor features, and geometric registration of segmented regions

between the images. Sensor-dependent features and a novel multiple sensor feature,

called the correspondence feature, were used to estimate the class, target or non-target, of

segmented regions in FUR and range images. Geometric registration was required to

measure the multiple sensor correspondence feature, since the imagery was not pixel

registered.

It has been noted that the choice of features and the design of the classifier are often,

in practice, inseparable processes (Fukunaga, 1972:4; Devijver and Kittler, 1982:192-

193). This philosophy was adopted in this research. Though it is convenient to discuss

the features and the classifier in separate chapters, it is impossible to discuss the selection

of features without discussing the classifier. Thus, references to the classification algo-

rithm will appear in this chapter. The classifier is discussed in Chapter VI, and the reader

is referred to that chapter for questions regarding the classifier design.

The set of sensor-dependent features initially considered were chosen based on

exploiting properties of the targets compared to non-targets as viewed with a given sens-

ing mode. FLIR image features were based on pixel brightness and gross shape. Range

image features were based on size, gross shape, and distance. A selection process was

applied to the initial set of features to select a subset for use in the classifier. The selec-

tion was based on minimizing the probability of error which would arise from using a

single feature in the classifier.

A novel multiple sensor feature, called the correspondence feature, was developed
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for use in a multiple sensor environment. This feature was designed to exploit the obser-

vation that targets appear in the same space in both types of image, while segmented

non-targets do not tend to behave in this manner. The correspondence feature was used

to add information to the multiple sensor class-estimation processes based on a directed

search of areas in one sensor image based on regional cues from the other sensor image.

This search, conducted at the pixel level, was ased to estimate whether a target was

present in the cued region. It was not necessary for targets to be segmented by both sen-

sors for the correspondence feature to be useful in detecting targets: as part of the

correspondence feature computation the initial segmentation criterion in the cued region

was reevaluated to test the hypothesis that a target may have been present, but was lost

due to high noise or other segmentation problems. The correspondence feature proved to

provide a very powerful piece of information to the target/non-target discrimination pro-

cess.

Accurate geometric registration between the images was required to obtain the

correspondence feature. Pixel registration was not required to measure the correspon-

dence feature, but lack of pixel registration was a factor in its development. The

correspondence feature was a region-based feature in the sense that it measured proper-

ties of a cued region, rather than making a measurement requiring pixel-to-pixel registra-

tion between the images. Allowances were made for small mis-registrations between the

images in the criteria for assigning the various values of the correspondence feature.

The remainder of this chapter is organized as follows. Background to the problem of

feature selection is presented in the next section. The criterion used to select single sen-

sor features from the larger set of features initially considered, and the features selected

are then discussed. This is followed by discussions of the geometric registration tech-

nique and the multiple sensor correspondence feature. Conclusions and comments are

made in the final section of this chapter.
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5.1 Background

In pattern recognition the term feature is used to define a measurement which is

made on input patterns which contains information useful for distinguishing the various

patterns. Unfortunately, there is very little theory to guide the choice of features

(Devijver and Kittler, 1982:15). In choosing features, consideration must be given to the

physics of the sensor, the nature and complexity of the classification problem, and meas-

urements to demonstrate that the features selected separate the classes. For the present

problem, feature selection involved choosing a set of features which showed good class

separation (Fukunaga, 1972:258; Devijver and Kittler, 1982:15).

Optimal approaches for choosing the 'best" subset of a larger set of features have

been demonstrated (Devijver and Kittler, 1982:204-205). An example of an optimal

search algorithm is the "branch and bound" algorithm (Devijver and Kittler, 1982:207-

214). Such approaches assure the selection of the best set of features, in a minimum

error sense, but can involve large amounts of computation for even simple problems

(Devijver and Kittler, 1982:204-205).

Suboptimal approaches to choosing the best set of features reduce .'(e computational

burden associated with selecting features. The cost associated with this reduction is that

a less reliable set of features may be obtained than would be obtained through an optimal

search (Devijver and Kittler, 1982:214-216). One example of a suboptimal approach is

the "best features" method, in which the individually best features, as evaluated using

some performance criterion, are selected (Lewis, 1962:172-173; Devijver and Kittler,

1982:215-216).

5.2 Feature Selection Method

Several features were initially considereo for each type of sensoi image. This initial

set of izatures was chosen based on an understanding of the sensor physics, and an

assessment of the characteristics of segmented targets when compared to segmented
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non-targets. Features which were insensitive to small changes in the pixels present in

segmented target regions were used; for example, the length-to-width ratio of segmented

regions. Local background, as used below, refers to a rectangular window 50% larger in

both length and width than a rectangular box just holding the segmented region, which is

centered on the segmented region, and which excludes the pixels in the segmented

region.

Nine features for FLIR images were considered: (1) the standard deviation of the

brightness levels in a segmented region, called the pixel standard deviation; (2) the

difference between the mean brightness level of a segmented region and the mean bright-

ness of the local background, called the difference of the means; (3) the maximum pixel

value present in a segmented region, called the maximum pixel value; (4) the ratio of the

number of pixels in a region to the number of pixels in a rectangular box just holding the

region, called the compactness; (5) the ratio of the number of edge pixels to the number

of pixels in a region, called the complexity (Rosenfeld and Kak, 1982:265); (6) the ratio

of the difference between the mean brightness of a region and the mean brightness of the

local background to the sum of these two mean brightnesses, called the contrast of the

means; (7) the internal contrast of a segmented region, called the contrast; (8) the ratio of

the number of pixels within 10% of the brightness of the brightest pixel in a region to the

total number of pixels m the region, called the bright pixel ratio; and (9) the ratio of the

horizortal extent of a rectangular box just holding a segmented region to the vertical

extent of this box, called the length-to-width ratio.

Eight range image features were considered: (1) the length of a segmented region,

computed from the mean range and the horizontal angular subtense of the region, without

compensation for the orientation of the region; (2) the height of the region, computed

from the vertical angular subtense of the region, without compensating for its orientation;

(3) the length-to-width ratio, as computed for FLIR images; (4) compactness, as com-

puted for FLIR images; (5) complexity, as computed for FLIR images; (6) the standard
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deviation of the range values in a segmented region, called the pixel standard deviation;

(7) the absolute value of the difference between the mean range of a segmented region

and the mean range of its immediate background, callea the absolute difference of the

means; and (8) the absolute value of the difference between the standard deviation of the

range measurements for a segmented region and the standard deviation of the range

measurements of the pixels in the local background, called the absolute difference of the

standard deviations.

All of the features initially considered were computed for every segmented region

and stored. Computation of several of the features mentioned above required access to

both the segmented image and an earlier version of the images, specifically, the raw

FUR image and the smoothed range image. The processing architecture shown in Figure

(2-1) provided for this by saving the raw FLIR image and the smoothed range image in

the image memory.

Discrete class-conditioned probability density functions (PDF) were computed for

all of the features using a histogram approach with equally spaced bins (Fukunaga,

1972:184-186; Devijver and Kittler, 1982:424-425). The number of bins used in the his-

tograms were obtained empirically: fifteen bins were used for FLIR image features and

seven bins were used for range image features. Numerical values for the class-

conditioned PDFs were obtained using the relative frequency of occurrence approach

(Papoulis, 1965:34):

p(fi(j), 0t)- n(fi(j)and0k)
n(0k(5-1)

where p (fi (J) I Ok) is a discrete conditional PDF value, fi (J) represents the th feature

having a value in the jth bin, 0 k iE the k h class, and n(.) represents the number of

occurrences observed in the data base. For the present case, the set [Ok) was a two

member set with 01 = target, and 02 = non-target. An example of the class-conditioned

PDFs computed in this manner is shown in Figure (5-1). Both of the class-conditioned
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PDFs of interest, p (fi (j)l target) and p (fi (j)I non-target), are shown in Figure (5-1).

These are discrete PDFs, though the points are connected in Figure (5-1) to allow the

trends to be more easily observed.

.8

.6

0~

.2

12 3 4 5 6 7
FEATURE VALUE, BIN

Figure (5-1). Class-conditioned PDFs for the length-to-width ratio feature for
range images: * indicates class = target; + indicates class = non-target.

A subset of the features considered was selected for use in the classifier. This selec-

tion was accomplished using the best features approach (Devijver and Kittler, 1982:215-

216). The features were rank-ordered using the single feature probability of class estima-

tion error as the ranking criterion.

The probability of class estimation error, Pe, was computed for each feature using

(Melsa and Cohn, 1978:38):

P, = P (d=target, t=non-target) + P (d-non-target, t=target)

= P (d=target It =non-target)P (non-target) + P (d =non-target I t =target)P (target)

= 0.5(P (d =target I t =non-target) + P (d =non-target I t =target)) (5-2)
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where P () is a probability, d is the single feature class estimate, or decision, t is the true

class of the region, and the factor 0.5 arises from the assumption, made in the classifier,

that the classes are, a priori, equally likely. Equation (5-2) was used to compute numeri-

cal values for Pe by noting that the classifier used the Bayesian minimum error decision

criterion (Melsa and Cohn, 1978:42), which required that the most likely class be chosen

based on each feature observation. Thus, Equation (5-2) may be expressed as:

P, (i) = 0.5 Pmin (k)(f (j)I k ) (5-3)

where P, (i) is the probability of error for the th feature, min (k) indicates that the

minimum is taken over the two classes, and the summation is taken over the J bins.

Table (5-1). Rank-ordered Pe for FLIR image features.

Feature Pe

Complexity 0.210
Length-to-width ratio 0.244
Contrast of the means 0.259
Maximum pixel value 0.296
Contrast 0.296
Difference of the means 0.311
Pixel std. dev. 0.317
Bright pixel ratio 0.350
Compactness 0.357

Single sensor Pe (i) were computed for the data base. The values obtained were

rank-ordered, and are displayed in Tables (5-1) and (5-2) for FLIR and range images,

respectively.

The three best features for each type of sensor, as judged by the single sensor proba-

bility of class estimation error, were selected to be examined in more detail. Of particu-

lar interest was the impact of various combinations of these features on the performance

of the classifier. Thus, the FLIR features selected were complexity, length-to-width ratio,
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Table (5-2). Rank-ordered P, for range image features.

Feature Pe

Length-to-width ratio 0.202
Abs. difference of the std. dev. 0.262
Complexity 0.275
Pixel standard deviation 0.289
Abs. difference of the means 0.341
Length 0.343
Height 0.377
Compactness 0.398

and the contrast of the means. The range features selected were length-to-width ratio, the

absolute difference of the standard deviations, and the complexity. The impact of using

various combinations of these features in the classifier is discussed in Chapter VI.

5.3 Geometric Registration

The need for geometric registration between the sensor images in a multiple sensor

system was apparent (Mitiche and Aggarwal, 1986). The data base was not pixel

registered. Accurate measurements of the relative positions of the sensors and their

pointing angles were also not available. In addition, the resolutions of the two sensors

were different (see Appendix A). Thus, pixel-to-pixel registration between the sensor

images would have been quite difficult, and was not addressed.

A means of geometrically registering regions between the sensor images was

developed. A single pixel, called the common pixel, was chosen in each of a matched

pair of images which was taken as originating from the same point in space. Regions

were then registered by computing angular displacements from the common pixel for the

pixels of interest in one image, and locating the corresponding angular displacements

from the common pixel in the other image. This process was called pixel translation.

Disparities in the resolutions of the sensors were accommodated in the pixel translation
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process. Though pixel translation was a multiple sensor pixel level process, the measure-

ment performed through pixel translation, specifically, computation of the correspon-

dence feature, contained allowances for small errors in locating the common pixel.

The common pixels were obtained from a one-time manual review of the segmented

versions of corresponding FLIR and range images. A target which was segmented well

in each type of image was selected. The center pixel of a rectangular box just holding

the common target in each type of image was selected as the common pixel for each

image. The common pixel locations were stored and accessed as required. This method

provided an effective means of obtaining geometrical registration from non-pixel

registered views of the same scene. Use of this manual technique was merely convenient

for the data base, and does not affect the utility of the approach defined for processing

non-pixel registered imagery for operational systems. In an operational system the

important requirement would be that some means of accurate geometric registration is

present. In a well designed operational system the geometric transformation between the

images would, most likely, be computed by the sensor positioning systems.

The process of pixel translation was used to locate corresponding positions of seg-

mented regions in one type of image in the other type of image. The notion of one sensor

"cueing" a region in the other sensor image arises from this technique. The sensor image

which provided the cues for regional searches was called the dominant sensor. The sen-

sor image which was searched was called the non-dominant sensor image.

5.4 Correspondence Feature

The correspondence feature is a unique multiple sensor feature developed under this

project. It was developed to exploit the observation that targets lie in the same space,

regardless of which sensor viewed the scene, while segmented non-target regions do not

tend to behave in this manner. It was not required that targets be segmented in both types

of image for the corresponoence feature to provide useful information. A technique for

relaxing the segmentation criteria in cued regions was developed to test the possibility
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that a target was actually present in a cued region, but was lost during segmentation.

The concepts of the dominant sensor image and the non-dominant sensor image,

and the process of pixel translation were important to the computation of the correspon-

dence feature. Segmented regions in the dominant sensor image were used to provide

regional cues for searches in the non-dominant sensor image. Pixels in segmented

regions of the dominant sensor image were located in the non-dominant sensor image

through the process of pixel translation. The correspondence feature value for a seg-

mented region in the dominant sensor image was a function of the properties of the cued

pixels in the non-dominant sensor image. Both sensor images were used sequentially as

the dominant sensor image so that correspondence feature values were measured for all

segmented regions in both types of sensor image.

The correspondence feature had four mutually exclusive possible values: (1) strong

correspondence (SC); (2) weak correspondence (WC); (3) weak-weak correspondence

(WWC); and (4) no correspondence (NC). The value SC indicated that segmented

regions in both types of image occupied very nearly the same space. The value WC indi-

cated that segmented regions in both types of image occupied some of the same space,

but not sufficiently well to be declared as a SC. The value WWC indicated that no seg-

mented region in the non-dominant sensor image occupied the cued region sufficiently

well to be declared either a SC or a WC, but when the initial segmentation criterion was

relaxed in the cued region a sufficient fraction of the cued pixels were found to pass the

relaxed initial segmentation test. The value NC was used to indicate that none of the

above conditions were met.

A region labeling scheme was used as part of the correspondence feature computa-

tion. The labeling scheme accepted a segmented image as input and created an inter-

mediate image called the labeled image, L, where the pixel locations of connected

regions were assigned a new integer value between 1 and NR, where NR was the number

of regions in the segmented image. The approach taken to the region labeling algorithm

78



was pixel aggregation (Gonzalez and Wintz, 1987:369-373), where the aggregation cri-

terion was occupancy of pixels in the 3x3 pixel neighborhood of pixels already identified

as members of the nth region. All pixels in a connected region were assigned the same

integer value. This scheme labeled regions in segmented images consistently, and thus

provided a tool for identifying segmented regions by a single integer.

The correspondence feature value for a segmented region in the dominant sensor

image was computed by applying pixel translation to the pixels in the region and observ-

ing some properties of the pixels cued in the non-dominant sensor image. Two properties

of the translated pixels were observed: (1) the number of dominant sensor image pixels

translated to pixels in the mh region of the non-dominant sensor image; and (2) the

number of dominant sensor image pixels translated to pixels which passed a relaxed ver-

sion of the critical segmentation criterion for the non-dominant sensor image. For the

case of the range image being the non-dominant sensor image, the error threshold (see

Chapter IV) was increased by a factor of 1.5. The need to re-examine the error Image

based on multiple sensor information was the reason for storing the error image in the

image memory (see Chapter II). For the case of the FLIR image being the non-dominant

sensor image, the brightness threshold (see Chapter III) was reduced by a factor of 0.9.

As the value of the correspondence feature was determined for each segmented

region in the dominant sensor image, entries were made in correspondence tables, which

are described below. Since the correspondence feature values SC and WC address the

joint spatial occupancy of segmented regions in both types of images, the correspondence

tables were used to resolve joint spatial occupancy issues in the multiple sensor single

decision algorithm. This topic is discussed in Chapter VI.

The value SC had two criteria: (1) at least 55% of the pixels in the dominant sensor

image were translated to the same segmented region in the non-dominant sensor image,

and if (1) was satisfied: (2) the horizontal angular subtense of the region in the dominant

sensor image and the region in the non-dominant sensor image which satisfied (1) were
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equal to within ±20%. The value SC occurred most frequently when targets segmented

well in both types of image. When a SC was observed an entry was made in a table,

called the strong correspondence table, of the form: the mth region in the dominant sen-

sor image has a SC with the ni h region in the non-dominant sensor image, which was

denoted notationally as SC (m) = n.

If no SC was found for a region, then the possibility WC was explored. A value of

WC was declared for a region in the dominant sensor image if criterion (1) for the value

SC was satisfied, but not criterion (2). The value WC occurred most frequently when: (1)

targets were partially segmented in the dominant sensor image; or (2) when targets were

connected in the non-dominant sensor image, such as the case discussed in Chapter III

where a jeep, occluded by a tank, and the tank were segmented as a single region. When

a WC was observed an entry was made in a table, called the weak correspondence table,

of the form: the mth region in the dominant sensor image has a WC with the nth region

in the non-dominant sensor image, which was denoted notationally as WC (m) = n.

If neither a SC nor a WC was found for a region in the dominant sensor image, then

the WWC possibility was explored. The WWC accounted for the case where a target

was viewed by both sensors, but was lost in one of the images during segmentation. For

the case of the FLIR image being the dominant sensor image, a WWC was declared if

30% of the pixels in the FLIR region were translated to range image pixels with error

image values of less than 1.5 times the error threshold (see Chapter IV) at the appropriate

range. For the case of the range image being the dominant sensor image, a WWC was

declared if 70% of the pixels in the range image region were translated to FLIR image

pixels with brightness values greater than 0.9 times the brightness threshold (see Chapter

II) for the FLIR image. When a WWC was found an entry was made in a table, called

the weak correspondence table, of the form: the mth region in the dominant sensor image

has a WWC.

When none of the above correspondence values were observed, the value NC was
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declared for the region in the dominant sensor image. The value NC occurred most fre-

quently for segmented non-target regions.

Allowances for small errors in the choice of the common pixel were made in setting

the tolerances for the correspondence feature values SC, WC, and WWC. Specifically,

the percentages of pixels required to assign the various values for the correspondence

feature were developed to allow for the possibility of such errors. Better geometric regis-

tration across the data base would probably allow these percentages to be increased.

Good performance was obtained with the values described above. Performance is

quantified in Chapter VI.

Correspondence feature values were computed for all segmented regions viewed

completely by both sensors, and stored. The range images were uniformly completely

contained within the FLIR images. Thus, all segmented regions in the range images were

also viewed by the corresponding FLIR image, however, the converse was not true.

Specifically, many FLIR images contained targets not viewed by the corresponding range

image, and segmented FUR images often contained non-target regions only p ... dally

viewed by the range image.

Discrete class-conditioned PDFs were computed for the correspondence feature for

the FLIR and range image data bases using Equation (5-1). The PDFs obtained are

displayed in Figures (5-2) and (5-3) for FLIR and range images, respectively. Single

feature probabilities of error were computed for the correspondence feature using Equa-

tion (5-3) as FLIR Pe (correspondence feature) = 0.245, and range

Pe (correspondence feature) = 0.085.

In Figure (5-2) the value for the probability of observing a SC given non-target is

shown as 0.0001, the value used in the implementation. In fact, no instances of a non-

target region possessing a SC were observed in the data base, giving an observed proba-

bility of zero to this possibility. In Bayesian inference processes a probability of zero
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Class-Conditioned PDF for FUR Correspondence Feature

Probability
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D Conditional Probability Given Class = Target

D Conditional Probability Given Class = Non-target

Figure (5-2). Discrete class-conditioned PDF for FLIR image correspondence
feature.

corresponds to an impossible event. The possibility of a FLIR non-target region with a

SC was viewed as unlikely, rather than impossible. Thus, the value was set as shown in

Figure (5-2).

5.5 Conclusions

A set of single sensor features was selected for further study from a larger set of

features using the best feature approach, based on the criterion of minimizing single

feature probability of error. Three FLIR image features and three range image features

were selected using this technique. The performance of the various combinations of
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Class-Conditioned PDF for Ran2e Correspondence Feature

Probability
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Figure (5-3). Discrete class-conditioned PDF for range image correspondence
feature.

these features is discussed in Chapter VI. Based on the good performance obtained with

the features selected in this manner, it was concluded that the best features approach to

choosing features was adequate for the present problem.

The multiple sensor correspondence feature was developed to exploit the observa-

tion that targets lie in the same space, regardless of which sensor viewed the scene, while

segmented non-target regions do not tend to behave in this manner. The correspondence

feature took four mutually exclusive values. Each of the values provided useful informa-

tion about the properties of a region in the non-dominant sensor image which was cued
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by a region in the dominant sensor image.

Allowances were made for small errors in the locations of the common pixels in the

various percentages used to assign correspondence feature values. More accurate and

consistent geometric registration would allow these percentages to be raised. One poten-

tial result of raising these tolerances would be that fewer non-target regions would be

assigned correspondence feature values of SC and WC. This would, in turn, would result

in the correspondence feature being a better discriminator of targets and non-targets.

Figures (5-2) and (5-3) show that the correspondence feature for range images is a

better discriminant of targets and non-targets than the correspondence feature for FLIR

images. The major factor contributing to this result is higher noise in the range imagery.

High noise on a range image target contributes directly to high absolute errors associated

with a plane fit to that region, often to the extent that even the relaxed error threshold will

not pass a target region as being planar. Thus, proportionally more FLIR target regions

acquired a correspondence feature value of NC than range image target regions. The

large role of heuristics in the range image segmentation process also contributed to this

result. Specifically, while the planarity test was found to be an excellent selector of tar-

get pixels, it often allowed a larger fraction of the scene to pass the initial segmentatior

test than the brightness threshold on the FLIR image. Heuristics were used to reject most

of the non-target pixels. However, the result was that segmented non-targets in FLIR

images were more likely to acquire correspondence feature values of WWC than seg-

mented non-targets in range images. A better criterion for WWC for segmented FLIR

regions, perhaps including surface orientation information, would probably improve the

performance of the FUR correspondence feature.

The correspondence feature is a novel feature which, as is discussed in Chapter VI,

provided very useful information to the multiple sensor class estimation process. The

correspondence feature may only be obtained in a multiple sensor system. Performance

improvements resulting from incorporation of this information into the decision process
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advocate strongly for use of multiple sensor target detection systems.
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VI. Single Sensor and Multiple Sensor Target Detection

6.0 Introduction

The problem discussed in this chapter is that of automatically estimating the class,

target or non-target, of segmented regions in FLIR and range images. Topics discussed

include formulation of the Bayesian decision problem, single sensor and multiple sensor

target detection algorithms, and the performance obtained with each approach. Single

sensor and multiple sensor target detection approaches were distinguished by the use of

correspondence feature information in the multiple sensor cases. Use of correspondence

feature information was found to improve target detection rates in every case, while

reducing, or not affecting the false alarm rates.

Two single sensor target detection algorithms were developed: (1) FLIR-only; and

(2) range-only. These algorithms estimated the class of segmented regions based on

information available from only one sensor. An exhaustive search of the three best

features for each sensor, which were discussed in Chapter V, was conducted to obtain

optimal performance from the single sensor cases. The single sensor cases provided a

baseline performance for comparison to the multiple sensor cases.

Three multiple sensor target detection approaches were examined: (1) FLIR looking

into range (FLIR/range), where the class of segmented regions in FLIR images was

estimated using feature information obtained from the single sensor FLIR image features

and from the correspondence feature; (2) range looking into FLIR (range/FLIR), the

reciprocal of (1), where the class of segmented regions in range images was estimated

using single sensor range image feature information and correspondence feature informa-

tion; and (3) the single decision (SD) algorithm, in which the joint spatial occupancy of

segmented regions in space was resolved, and a single decision made for each segmented

region of space, regardless of which sensor the region appeared in. All of the multiple
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sensor approaches used correspondence feature information in the class estimation pro-

cess. The SD algorithm also used the correspondence tables computed during the

correspondence feature measurement (see Chapter V) to resolve joint spatial occupancy

issues between segmented regions in the images. An exhaustive search of the three best

single sensor features was conducted to determine the best set of features to use in con-

junction with the correspondence feature.

In the FLIR/range and range/FLIR algorithms a single class estimate was computed

for each segmented region in the dominant sensor image. The concept of dominant and

non-dominant sensor images was defined in Chapter V. To reiterate, the dominant sensor

image was the sensor image used to drive the search of cued regions in the other, non-

dominant sensor image during correspondence feature measurement. For the FLIR/range

algorithm, the FUR image was the dominant sensor image. For the range/FLIR algo-

rithm, the range image was the dominant sensor image. These algorithms explored the

concept of using the non-dominant sensor to assist the dominant sensor. It is important

to note that the upper bound on the number of target detection opportunities for the

FLIR/range and range/FLIR algorithms was the set of targets segmented in the dominant

sensor image. This was not the case for the SD algorithm.

The SD algorithm contained a rule for determining when segmented regions in both

sensor images occupied the same space. When joint spatial occupancy was detected, a

single class estimate was made for that region of space. In addition, the SD algorithm

determined where regions of space were segmented by only one sensor image, and also

made a class estimate for those regions. Thus, the upper bound on the number of target

detection opportunities for the SD algorithm was the the union of the sets of targets seg-

mented in each sensor image. This set is always at least as large as the set of targets seg-

mented in one of the sets of sensor images. In the present data base, the set of target

opportunities for the SD algorithm was larger that the set of target opportunities for any

of the other detection algorithms.
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Feature values and image truth, in the form of a target or non-target label for each

segmented region of each sensor image, were obtained for all segmented regions in the

data base. Image truth and feature values were stored indexed to the image file name and

the region label using the region labeling scheme described in Chapter V. This informa-

tion was stored and accessed as needed.

The remainder of this chapter is organized as follows. Background information per-

tinent to the approach taken is presented in the next section. The mathematical formula-

tion of the Bayesian class estimation problem is then discussed. Training, testing, and

performance measures are presented. This is followed by a discussion of the implemen-

tation of the single and multiple sensor target detection algorithms. Next, image truth

and data base considerations are discussed. Selection of optimum feature sets for each

detection system, and performance results are then discussed. Conclusions are drawn in

the final section.

6.1 Background and Approach

The target detection problem was approached as a two-class estimation problem in

which the class estimate was based on a single temporal observation (Melsa and Cohn,

1978:21-53). Bayesian decision theory was adopted to perform the class estimation pro-

cess. In particular, the Bayesian minimum probability of error decision rule (Melsa and

Cohn, 1978:42; Devijver and Kittler, 1982:33-43), also known as the Maximum a Pos-

teriori (MAP) decision criterion, was used.

Use of the MAP decision rule in conjunction with a single feature requires that the

class-conditioned probabilities for the feature value be exhibited. The feature values

obtained from the data base constituted finite samples of inherently continuous random

variables. The parametric form of the density functions governing these random vari-

ables, if such density functions exist, were unknown, a common problem in pattern

recognition (Fukunaga, 1972:165; Devijver and Kittler, 1982:63). To address this prob-

lem, discrete class-conditioned probability density functions (PDF) for each feature were
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measured using a histogram approach described in Chapter V, and discussed in detail

later in this chapter.

When multiple features are used in the class estimation process, as was the case

here, the class-conditioned probabilities for the feature set is required. This quantity is a

joint conditional probability of dimension equal to the number of features used. Obtain-

ing a reasonable estimate for multi-dimensional conditional probabilities is, in many

cases of interest, quite difficult (Duda et al, 1979b:83; Cheeseman, 1983:199; Cheese-

man, 1985:1003-1004). To alleviate the difficulty associated with obtaining multi-

dimensional class-conditioned probabilities, the features were assumed to be condition-

ally independent-

The assumption of conditional independence simplified the problem of exhibiting

the required multi-dimensional class-conditioned probabilities. While this assumption is

often, in practice, less than perfectly realized, this assumption has precedent, and has

been found useful for similar problems (Lewis, 1962; Duda et al, 1976:1080; Duda et al,

1979b:83-84; Cheeseman, 1985:1004). The major concern with assuming conditional

independence for data which is not conditionally independent is that single feature per-

formance measures cannot be readily extrapolated to a prediction of multiple feature per-

formance (Lewis, 1962:173). Unexpected performance results can arise due to unac-

counted for dependences between the features (Duda et al, 1979b:88-92; Cheeseman,

1983:198). However, the assumption of conditional independence was found to be use-

ful for the present work.

Prior densities for the classes must also be known, or assumed, to use the MAP

decision criterion. The prior densities were observable over the database. However, the

values obtained were functions of both the background environment and the target den-

sity provided during the data collection. Since there was no reason to suppose these den-

sities would be equivalent to the observed values under different data collection condi-

tions, the prior densities were set to be equally likely. The assumption of equally likely
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prior densities in the absence of good reason to choose otherwise has been called the

'principle of indifference' (Cheeseman, 1985).

Training and testing are always critical issues in classifier design and evaluation.

The goal of training and testing was to obtain a sample-based estimate of the actual error

rate of the classifier which would be observed by testing on a large amount of

equivalently distributed data. Training of the classifier consisted of exhibiting the class-

conditioned PDFs of the features for a subset of the entire database. Testing was accom-

plished by tabulating the performance of the class estimation algorithm on a subset of the

database disjoint from the training subset.

Several methods of selecting training and testing subsets have been developed

(Devijver and Kittler, 1982:343-359). The hold-one-out method was adopted for this pro-

ject (Foley, 1972:618; Devijver and Kittler, 1982:356-357). If Q samples are available,

in this method one sample is withheld while the classifier is trained on the remaining

(Q-l) samples. The classifier is then tested on the withheld sample, and the results are

tabulated. This procedure is repeated Q times, with a different sample withheld each

time. Results of such an exercise constitute the average performance across the Q sam-

ples. In the present case, images constituted the samples even though the images, in gen-

eral, contained more than one segmented region. Given a finite number of samples, this

method is the preferred method of obtaining an estimate of the error rate if sufficient

computational resources are available.

Preference for the hold-one-out method stems from its highly efficient use of the

available data, and from the fact that the estimate of the error rate obtained using this

method is approximately unbiased, regardless of the underlying distributions of the

features (Devijver and Kittler, 1982:356). An estimator of a statistical quantity, in this

case the sample-based estimate of the actual error rate, is said to be unbiased if the

expected value of the estimator equals the value of the parameter being estimated (Keep-

ing, 1962:101). Other methods of estimating the error rate, such as the resubstitution
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method, the hold-out method, and the rotation method, are unduly biased (that is, they

give overly optimistic or pessimistic estimates of the error rate), or use the information

available in the database less efficiently (Devijver and Kittler: 1982:353-359).

Comparison of competing designs is important to evaluating the performance of

class estimation algorithms. An error counting method for obtaining the 95% confidence

interval on the error rate was adopted (Devijver and Kittler, 1982:346-349). The 95%

confidence interval provides a range of values for the error rate within which the actual

error rate for an infinite amount of equivalently distributed data would lie with 95% pro-

bability. Two additional performance measures were also used: (I) the target detection

rate; and (2) the rate of false alarms per detection declaration. The total error rate

addresses all classification errors, while the target detection rate and the rate of false

alarms per detection declaration isolate the two types of possible classification errors.

6.2 Formulation of the Bayesian Class Estimation Problem

The MAP decision criterion (Melsa and Cohn, 1978:38-44) was used to estimate the

class of segmented regions. The specific problem was to estimate to which of the classes,

(0k], each segmented region belonged. Information available to the class estimation pro-

cess consisted of a set of feature measurements, (fi (j)), the class-conditioned probabili-

ties of observing (fi (j )}, p ([fi (j)} I 0k ), and estimates of the probabilities of observing

the classes, p (0k), called the prior densities. The notation fi (j) refers to the measure-

ment of the ih feature in the j1h bin (see Chapter V). Computation of the single feature

class-conditioned probabilities, p (fi (j) IOA), is described in the next section. The set

(0k] consisted of two classes, 01 = target, and 02 = non-target. For reasons discussed pre-

viously, the prior densities were set equally likely: p (01) = p (02) = 0.5.

When multiple features are used, the class-conditioned probabilities of interest are

the p ({fi (J)) 0k). The features were assumed to be conditionally independent, so that:

P (fi ()) 1k) = I p (V i(i) ek) (6-1)
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where I is the number of features.

For the present problem, the MAP criterion may be stated as: given an observation,

[fi ()}), choose the most likely class, Ok (Melsa and Cohn, 1978:42). The probability of

the occurrence of the class Ok given the observation {fi (j)} must be computed. Bayes

rule provides for this computation:

p (Ok I If i (M") = P (If i W)I ))1k) P (6k) (62
P(f i(J)} ) (6-2)

In Equation (6-2) the probability p ([fi (j)}) is the probability of observing the feature set

(f i (j)}, given by:

P(Ifi(J)})) =  P (Ifi() I 6k) P (Ok) (6-3)

Thus, the class estimation problem was reduced to the problem of computing

p(0 1 1[fi(j)}) and P(021 {fi()}). When p(011(fi(j)}) >p (021 If i U))) then the class

estimate for the region was 01, otherwise the region was estimated as being a member of

class 02.

The underlying mathematical principle of this class estimation technique was quite

simple. In general, the major problem encountered with using this approach is obtaining

reasonable estimates for the class-conditioned probabilities and the prior densities (Duda

et al, 1979b:83; Garvey and Lowrance, 1981:3-5; Devijver and Kittler, 1982:62-63;

Lowrance and Garvey, 1983:2-9; Cheeseman, 1983:198; Cheeseman, 1985). The ulti-

mate justification for any approach to exhibiting the required conditional and prior proba-

bilities lies in the performance obtained, which was judged to be quite good.

6.3 Training, Testing, and Performance Measures

Training the classifier consisted of obtaining estimates for the discrete class-

conditioned PDFs, p (fi (J) I 0k). These estimates were obtained from a subset of the data

base called the training set. Testing of the classifier was accomplished by measuring the
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performance of the classifier on the subset of the data base not included in the training

set, called the test set. Three measurements of performance were used to evaluate the

various classification algorithms: (1) detection rate, Pd; (2) the rate of false alarms per

detection declaration, FAR; and (3) the total error rate, P, (tot). A false alarm was

defined as a non-target region which was incorrectly classified as a target.

Training and testing subsets of the data base were selected using the hold-one-out

method. This technique was implemented by withholding a single matched pair of FUR

and range images from the data base, and using the remainder of the data base for train-

ing. The performance of the classifier was measured on the withheld samples, and the

process was repeated until all the matched pairs of images had been withheld once. Dur-

ing this process, performance on the test samples was continuously tabulated.

The discrete class-conditioned PDFs of the features were measured on the training

set using a histogram approach with equally spaced bins, as discussed in Chapter V. Let

Nb be the number of bins, and let fi (max) and fi (min) be the maximum and minimum

excursions nf the Ph feature observed in the training set. The histogram approach to

exhibiting the required PDFs was implemented by dividing the interval

[f (main), fi (max)] into Nb equally spaced bins of width, Wb:

Wb = fi(max)-fi(rin) (6-4)Nb

A feature value, fi, fell in the jth bin when:

(]'i(rain) +(j-1)Wb ) < f < (f (rain)+ jWb ) (6-5)

where the bins were indexed by j, 1 < j !5 Nb. The bins were dimensionless, and hence,

the notation fj (j) to denote the occurrence of the th feature for a region having a value

in the jh bin. The number of occurrences of the event (class=Ok andfi(j)),

n (fi (j) and 0k), in the training set were counted. The number of occurrences of each

class, n (0k) in the training set were also counted. The class-conditionti probabilities of

observing the iP' feature in the jih bin, p (fi (j) I Ok), were then computed using Equation
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(5-1). The collection of these probabilities for both classes, for all bins constituted the

discrete class-conditioned PDF for a feature. Empirically obtained values for Nb were

used: Nb = 15 for FLIR data, and Nb = 7 for range data.

When testing was performed, there was no guarantee that the feature values

observed, fi, would fall in the interval Lfi (min), fi (max)], since the test data was not

included in the training set. In the implementation, fi which were greater than fi (max)

were mapped to the bin Nb, and fi which were less than fi (min) were mapped to bin 1.

As testing was conducted, four performance-related variables were tabulated: (1)

the number of target opportunities, NI; (2) the number of targets correctly classified,

N (corr); (3) the number of non-target opportunities, Nu; and (4) the number of non-

targets correctly classified, Nu (corr). Three performance measures were computed: (1)

the target detection rate, Pd:

SN, (corr) (6-6)

(2) the rate of false alarms per detection declaration, FAR:

FAR = (Nu - Nu (corr)) (6-7)
(N, - Nw (corr)) + Nt (corr)

and, (3) the total error rate, Pe (tot):

PC(tot) (NI - N (corr)) + (N, - Nu (corr)) (6-8)
N, +Nt

The concept of the 95% confidence interval (Keeping, 1962:96-101; Devijver and

Kittler, 1982:346-349) was used to compare Pe (tot) for the various detection algorithms.

The sample-based estimate of the variance of the total error rate, 0 e 2(tot) is given by

(Devijver and Kittler, 1982:347):

ae 2(tot) P (tOt )( 1 - P ) (tot))6-9)

where Njo is the total number of samples tested. It is possible to show that, with 95%
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probability, the value of Pc(tot) that would be observed for a large amount of

equivalently distributed data lies in the interval

[(P, (tot) - 1.96ae (tot)), (P, (tot) + 1.96ce (tot))] (Devijver and Kittler, 1982:347-349).

This interval is called the 95% confidence interval for Pe (tot).

6.4 Detection Algorithm Implementations

The FLIR-only and range-only detection algorithms used feature information avail-

able from only one sensor to make class estimates. These algorithms were implemented

by computing a class estimate for each segmented region in the images using single sen-

sor feature information and the training and testing techniques discussed above.

The multiple sensor algorithms made class estimates using multiple sensor informa-

tion for segmented regions which were viewed completely by both sensor images. The

FLIR images viewed all of the segmented regions in the range images, but the converse

was not true. Many FLIR targets were outside the field of view of the range sensor, and

many segmented non-target regions in the FUR imagery were only partially viewed by

the associated range image. Segmented regions not viewed completely by both sensor

images were not considered by the multiple sensor algorithms.

The FLIR/range and range/FLIR detection algorithms computed class estimates for

segmented regions in the dominant sensor image. Single sensor feature information from

the dominant sensor image, and the multiple sensor correspondence feature were used in

these class estimation processes. Class estimation, training, and testing were accom-

plished using the techniques outlined above.

The SD detection algorithm computed a class estimate for each segmented region of

space viewed completely by both sensor images, regardless of which sensor image the

segmented regions appeared in. Single sensor feature information, correspondence

feature information, and, under certain conditions, feature information from both sensor

images was used to make class estimates. Class estimation, training, and testing were
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conducted using the methods described above.

In the SD algorithm, both sensor images were used sequentially as the dominant

sensor image to measure the correspondence feature and to make the appropriate entries

in the correspondence tables for all segmented regions. The probabilities p (Ok I [fi ( )})

were then computed for all regions using single sensor features and the correspondence

feature, and under certain conditions, feature information from both sensors. An exhaus-

tive search of the correspondence tables was then conducted to resolve the joint spatial

occupancy issues, allowing only one class estimate to be made for each segmented region

of space. The process of resolving the joint spatial occupancy issues was called

deconfliction.

The deconfliction rule performed an exhaustive search of the correspondence tables

for FLIR and range images. The images were searched sequentially, with the FLIR

image arbitrarily selected as the first image searched. The correspondence feature tables

of interest to the deconfliction algorithm were the strong correspondence table , SC (m),

and the weak correspondence table, WC (m), since these correspondence feature values

indicated that segmented regions in both sensor images jointly occupied the same space.

Correspondence table entries were defined in Chapter V to be of the form

SC (m)= n and WC (m) = n, which was interpreted as: "the mth region in the dominant

sensor image has a SC or WC, appropriately, with the nih region in the non-dominant

sensor image". This notation is now refined with a subscript, F or R, to indicate that

FLIR or range, respectively, was the dominant sensor image. Thus, SCF (M) = n implies

that the m1h region in the FLIR image had a SC with the n1h region in the range image.

Two special cases of joint spatial occupancy were of interest: (1) mutual correspon-

dence; and (2) non-mutual correspondence. Mutual correspondences occurred under the

following cases of correspondence table entries:

(I) SCF (m) = n, and SCR (n) = m

(2) SCF (M) = n, and WCR (n) = m
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(3) WCF (m) = n, and SCR (n) = m

(4) WCF (M) = n, and WCR (n ) = m

Mutual correspondence occurred when segmented regions occupied the same space to a

good approximation. For example, two well segmented targets would typically have a

mutual SC. Non-mutual correspondences occurred under all other combinations of the

SC and WC tables, specifically:

(1)SCF(m)=n,butSCR(n)*m and WCR(n) * m
(2) WCF (m) = n, bur SCR (n) * m and WCR (n) * m

(3) SCR (n ) = m, but SCF (m) * n and WCR (m) * n

(4) WCR (n) = m, but SCF (m) * n and WCR (n) * n

Non-mutual correspondence occurred when more than one region in one image

corresponded with a single region in the other image.

For example, a non-mutual correspondence occurred when a tank and a jeep seg-

mented distinctly in the range image, but were segmented as a single region in the

corresponding FLIR image. In this case the range image tank had either a SC or a WC

with the FLIR region, the range image jeep had a WC with the FLIR region, and the

FLIR image region had either a WC or a SC with the range image tank. Thus, the range

image tank and the FLIR image region had a mutual correspondence, while the range

image jeep and the FLIR image region had a non-mutual correspondence. The spatial

deconfliction algorithm contained a rule for resolving such occurrences.

Given the above partitioning of spatial correspondences, three possible cases of

joint spatial occupancy confronted the SD algorithm: (1) mutual correspondence; (2)

non-mut~ii correspondence; and (3) no spatial correspondence between segmented

regions. Multiple sensor information fusion and spatial deconfliction were handled in the

following manner:

(1) Mutual correspondence: Multiple sensor feature information was merged by assum-

ing conditional independence, and computing new class-conditioned probabilities for the
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combined feature set using:

Pw(fi(J))F k-) {f(.')R I (k)=P(fi())F IOk)P([fi(J)}R I(k) (6-10)

where the subscripts F and R , for FLIR and range, respectively, indicate which sensor

image provided the feature set. New estimates of p (Ok I ff (j )}) were computed using

Equation (6-10) in Equation (6-2), and the MAP criterion was applied to obtain a new

class estimate. A flag was raised in a table associated with the indices of the appropriate

regions to insure that the regions were never reconsidered by the SD algorithm.

(2) Non-mutual correspondence: The measure of confidence:

A = Ip(O1l{fi(j)}) -p (02 1 (fi(j)})I (6-11)

was computed for both regions, and the region with the largest A was used to make the

class estimate. A flag was raised in a table associated with the indices of the regions con-

sidered to insure the regions were never reconsidered by the SD algorithm.

(3) No correspondence: This occurred when a region had a correspondence feature value

of WWC or NC. A check of all regions in the other image was made to see if any SC or

WC existed to the region in question. If a SC or a WC was found to a region possessing

a WWC or a NC, and if the region possessing the SC or WC had not already been used in

(1) or (2) above, then the region possessing the SC or WC, was used to make the class

estimate for that region of space. Otherwise, the class estimate was made using the avail-

able information for the region possessing the WWC or NC. A flag was raised in a table

associated with the indices of the regions considered to insure the regions were never

reconsidered by SD algorithm.

The deconfliction rule allowed the class of segmented regions of space to be

estimated without redundancy. Other deconfliction rules are possible. For example, if

high quality estimates of the relative positions and pointing angles of the sensors had

been available, registration of the regions in an (azimuth angle, elevation angle) space
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would have been possible.

6.5 Image Truth and Data Base Considerations

Image truth was obtained through manual inspection of the segmented images in the

data base. Segmented regions were labeled with an integer value using the region label-

ing scheme discussed in Chapter V. Labeled images were displayed in conjunction with

the associated region label, and a target/non-target determination was made for each

region. The results were recorded and stored for easy access.

A segmented region was labeled as a target if it contained a target, more than one

target, or a subjectively evaluated 'significant' portion of a target. All other regions v, ere

labeled non-targets.

The FLIR image data base contained 97 images. The FLIR data base contained 230

segmented target regions, 153 of which were viewed completely by the corresponding

range images. It also contained 320 segmented non-target regions, of which 23 were

completely viewed by the associated range images.

The number of segmented target regions is different than the number of segmented

targets reported in Chapter III because the segmentation scoring method and the target

region counting method were different. Successful segmentations were scored if targets

visible in an image appeared in the segmented version of the image. However, in several

cases targets parked very close to each other were segmented as a single region. For

example, when a truck was occluding a jeep the result was that, quite often, the tank and

the jeep were segmented as a single region. This situation was scored as two successful

segmentations for two opportunities to segment a target. However, only one target

region appeared in the image, which contained both vehicles.

The range image data base consisted of 57 images containing 121 targets and 276

non-target regions. Because some range image corresponded to more than one FLIR

image, the total number of range image targets viewed by running through all 97 FLIR
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images was 207, and the number of non-target regions viewed was 463.

The disparity between the number of target regions in the range image data base,

207, and the number of target regions in the FUR data base, 153, was a result of three

anomalies in the data bases. First, multiple FLIR targets were occasionally segmented as

a single region, where this was never observed to occur for range images, having the

effect of decreasing the number of FLIR target regions relative to the number of range

target regions. Second, targets in the range image data base were more likely to be frac-

tured into two pieces by segmentation due to noise, having the effect of increasing the

number of range target regions relative to the number of FLIR target regions.

The third anomaly between the FUR and range data bases involved a group of tar-

gets at approximately 860 m range which appeared in the foreground of several images

of targets at approximately 1700 m range. In the FLIR image data base large portions of

these target were merged with the background due to the gain and brightness settings of

the FUR being adjusted to view the targets at 1700 m. (In fact, these targets were not as

'visible' in the FLIR segmentation scoring.) The targets at 860 m were typically

'chopped up' by the brightness threshold, and discarded by the heuristics. The range sen-

sor had no adjustments analogous to the gain and brightness settings of a FLIR, and the

the targets at 860 m were, quite frequently, segmented accurately in the range images.

This also had the effect of increasing the number of target regions in the range data base

relative to the FLIR data base.

The deconfliction algorithm, described in the previous section, was used to deter-

mine the number of segmented target and non-target regions in the space viewed by both

sensors. The result was that 217 target regions and 484 non-target regions were found.

Included in the 217 target regions were 36 target regions not segmented in the FLIR

image data base, and 11 target regions not segmented in the range image data base.
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6.6 Optimum Feature Sets and Performance

The three best features for each type of sensor image, discussed in Chapter V, were

examined exhaustively to obtain the optimal performance for each detection algorithm.

Optimum performance for three performance measures was obtained: (1) minimum total

error rate, P, (tot); (2) maximum detection rate, Pd; and (3) minimum rate of false

alarms per detection declaration, FAR.

From Chapter V, the three best FLIR features were: (1) complexity; (2) length-to-

width ratio; and (3) contrast of the means. The three best range image features were: (1)

length-to-width ratio; (2) the absolute difference of the standard deviations; and (3) com-

plexity. These features will be referred to by sensor and index in the discussion which

follows. For example, FLIR:2 refers to the FLIR length-to-width ratio feature.

The features found to give optimal performance for each measure are listed in

Tables (6-1), (6-2), and (6-3). Table (6-1) lists the best features for minimum P, (tot).

Table (6-2) lists the best features for maximum Pd. Table (6-3) lists the best features for

minimum FAR.

Table (6-1). Features giving minimum P, (tot).

Algorithm Feature Index

FLIR FLIR: 1,2,3
Range Range: 1,2,3
FLIR/Range FLIR: 1,3
Range/FLIR Range: 1
SD FLIR: 1.3; Range: 1

The values obtained for P, (tot), the 95% confidence interval on P, (tot), Pd, and

FAR for each algorithm as a function of the performance measure optimized are

displayed in Tables (6-4), (6-5), and (6-6). Table (6-4) shows performance for the

minimum P. (tot) criterion. Table (6-5) gives performance for the maximum Pd
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Table (6-2). Features giving maximum Pd

Algorithm Feature Index

FLIR FLIR: 1,2,3
Range Range: 1,3
FLIR/Range FLIR: 1,3
Range/FLIR Range: 1
SD FLIR: 1,3: Range: 1

criterion. Table (6-6) gives performance for the minimum FAR criterion. Tables of

absolute performance for every combination of the features is provided in Appendix C.

Table (6-3). Features giving minimum FAR

Algorithm Feature Index

FUR FLIR: 1,2,3
Range Range: 1,2,3
FLIR/Range FLIR: 1,3
Range/FLIR Range: 1,2,3
SD FLIR: 1,23; Range: 1,23

Table (6-4). Performance achieved with minimum Pe (tot).

Algorithm Pe (tot) 95% Confidence Pd FAR
Interval

FLIR 0.131 (0.081,0.181) 0.856 0.008
Range 0.136 (0.110,0.162) 0.681 0.151
FLIR/Range 0.091 (0.048,0.133) 0.902 0.007
Range/FLIR 0.060 (0.042,0.078) 0.952 0.132
SD 0.069 (0.050.0.087) 0.926 0.137

The power of the SD algorithm to detect targets not segmented in both images can
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be seen by noting that for the cases show in Tables (6-4) and (6-5) the SD algorithm

correctly detected 6 of 11 targets not segmented in the range image data base, and 26 of

36 targets not segmented in the FLIR image data base. For the case displayed in Table

(6-6) the SD algorithm correctly detected 5 of 11 targets not segmented in the range

image data base and 28 of 36 targets not segmented in the FUR image data base.

Table (6-5). Performance achieved with maximum Pd.

Algorithm P, (tot) 95% Confidence Pd FAR
Interval

FLIR 0.131 (0.081,0.181) 0.856 0.008
Range 0.179 (0.150,0.208) 0.850 0.336
FLIR/Range 0.091 (0.048,0.133) 0.902 0.007
Range/FLIR 0.060 (0.042,0.078) 0.952 0.132
SD 0.069 (0.050.0.087) 0.926 0.137

Examination of Tables (6-4), (6-5) and (6-6) show clearly that use of multiple sen-

sor information improves target detection performance by every measure used. The sta-

tistical significance of the performance improvement is best explained by examining the

95% confidence intervals arising from minimizing Pe (tot). When the intersection of the

confidence intervals for two competing algorithms is empty or small, then it can be

claimed with high confidence that the algorithm with lower P, (tot) represents a

significant improvement over the other algorithm. Thus, Table (6-4) shows that the

range/FLIR and SD algorithms are significantly better, in the minimum Pe (tot) sense,

that either single sensor algorithm.

The case for the FLIR/range algorithm being a significant improvement over the

single sensor cases is somewhat weaker due to the large overlap of the confidence inter-

vals. Thus, it cannot be stated with high confidence that the FLIR/range algorithm is

significantly better that the single sensor approaches, even though gratifying improve-

ments in both P, (tot) and Pd were obtained. Failure of the FLIR/range algorithm to
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Table (6-6). Performance achieved with minimum FAR.

Algorithm Pe (tot) 95% Confidence Pd FAR
Interval

FLIR 0.131 (0.081,0.181) 0.856 0.008
Range 0.136 (0.110,0.162) 0.681 0.151
FLIR/Range 0.091 (0.048,0.133) 0.902 0.007
Range/FLIR 0.061 (0.043,0.079) 0.903 0.101
SD 0.076 (0.056,0.096) 0.872 0.110

meet this measure of statistical significance is a direct consequence of the relatively small

number of samples in the FLIR data base (176) compared to the number of samples in

the range data base (670) and the SD (700) data base.

A word of caution is required for the FLIR and FLIR/range FAR. The FLIR data

base contained a very small number of non-target regions viewed completely by both

sensors (23). The FAR s show in Tables (6-4), (6-5), and (6-6) represent misclassification

of one non-target region in every case.

The FLIR and FLIR/Range FAR performance can be extrapolated by assuming that

in a more reasonable data set the ratio of segmented non-targets to segmented targets

would remain constant independent of which subset of the field of view was used ( that

is, 320/230 = 1.391), as would the rate of misclassification of non-target regions (that is,

1/23 = 0.043). Then for the 153 segmented target regions there would be

153x1.391 = 213 segmented non-targets of which 0.043x213 = 9 would be misclassified.

Using these new figure, the entries in Table (6-4) for the FLIR algorithm would become:

P 3(to) = 0.085, 95% confidence interval = (0.056,0.114), Pd = 0.856, and FAR = 0.064.

The entries in Table (6-5) for the FLIR/range algorithm would become: P, (tot) = 0.066,

95% confidence interval = (0.041,0.091), Pd= 0.902, and FAR = 0.06i. Even with this

extrapolation it is not clear that the FLIR/range algorithm is a significant improvement

over the FLIR-only algorithm. However, it is possible that a more reasonable estimate of
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the FLIR-related FAR has been obtained.

6.7 Conclusions

Numerous simplifications were made to achieve the performance obtained. In par-

ticular, the assumption of conditional independence between all features, the use of a his-

togram approach to estimating class-conditioned probabilities, and use of the suboptimal

best features approach to selecting a feature set were potentially risky assumptions. The

ultimate justification for the utility of these assumptions lies in the performance obtained.

It was concluded, based on the performance exhibited in Tables (6-4), (6-5), and (6-6)

that these simplifying assumptions were acceptable for the problem addressed.

Use of the multiple sensor correspondence feature in conjunction with single sensor

features was shown to improve performance in every measure used. The multiple sensor

algorithms improved performance over the single sensor algorithms even when the single

sensor algorithms were optimized. Improvements in total error rates for the range/FLIR

and SD algorithms were found to be significant. These results advocate strongly for use

of multiple sensors in similar problems.

The result that different sets of features gave optimum performance for different

algorithms and different performance measures is most likely a consequence of ignoring

statistical dependences between the features. However, the performance described in this

chapter is a good estimate of how the algorithms would perform on a large amount of

equivalently distributed data.

The SD algorithm merits special mention because it explicitly overcomes one limit

of single sensor target detection: the ability to only detect targets segmented in the avail-

able sensor image. Thus, the SD algorithm is the recommended detection approach if

detecting the most targets, in an absolute sense, is the design goal.
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VII. Conclusions and Future Directions

7.0 Conclusions

Use of multiple sensor information improved the performance of the target detec-

tion algorithms over the performance obtained for single sensor approaches for all com-

parative measures used when performance was optimized for each case. Hence, one of

the fundamental hypotheses of this project was supported by the results: the hypothesis

that the use of multiple sensor information can improve target detection performance.

The other fundamental hypothesis of the project was also supported: the processing

architecture shown in Figure (1-1) was found to provide a useful approach to extracting

and processing multiple sensor information. Single and multiple sensor processes were

partitioned in the architecture, allowing for the use of non-pixel registered imagery.

Regions of interest were geometrically registered between the images, rather than pixels.

Careful design and implementation of the multiple sensor systems was required, but this

research provides concrete evidence that information only obtainable from multiple sen-

sors can be used to improve target detection performance.

Multiple sensor information was incorporated into the target detection process

through the correspondence feature. The underlying principle of the correspondence

feature was that targets occupy the same space in all views of a scene, while segmented

non-target regions do not tend to behave in this manner. The implementation of this

principle was developed for the specific cases of FLIR and range images. However, this

concept should generalize directly to other combinations of sensors. To successfully

implement the correspondence feature for other combinations of sensors, the requirement

is that the sensors and their associated segmentation algorithms (or region of interest

selection algorithms) do not tend to provide false segmentations on similar types of scene

elements.
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The ability to perform multiple sensor operations by registering regions between the

images is a useful departure from the more common approach of registering pixels

through sensor design. Registration of regions is less physically demanding on the

design of the individual sensors, allowing 'optimal' individual sensors to be built and and

mounted separately on a platform. The concept of optimality is used here in the sense

that no design concessions need be made to the problem of sharing an aperture between

the sensors. These sensors could be used to survey disjoint scenes until multiple sensor

information is required, increasing coverage over an otherwise identical multiple sensor

system using a single aperture. The cost of this approach is that an accurate estimate of

the geometric transformation between the sensors must be maintained by the sensor posi-

tioning systems.

The processing architecture used to process multiple sensor information is generally

applicable, and may find use in future systems. This architecture was demonstrated for

two sensors, but is extensible to more than two sensors.

FLIR image segmentation was accomplished based on pixel brightness and heuristic

operations performed on regions. The initial segmentation step, an adaptive threshold

operation, used a heuristic rule to choose the threshold based on an automated inspection

of the histogram of an image. This technique provided excellent performance. However,

it is extensible only to FLIR images possessing approximately the same target and back-

ground brightness distributions as the data base used here.

New results in range image segmentation were obtained. Specifically, tactical tar-

gets were segmented based on the small-scale planar nature of their surfaces. Surface

orientation was explicitly neglected in this technique in favor of a novel planarity test.

The critical parameter in the planarity test, a threshold on the absolute error associated

with fitting planes to 3x3 regions in range images, was developed as a function of the

standard deviation of the range measurements (also known as the range accuracy). The

standard deviation of range measurements was shown to depend upon system perfor-
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mance measures and imaging parameters. Hence, the error threshold was a function of

physically significant and readily obtained measurements, a very useful property in a seg-

mentation system. The range segmentation algorithm is extensible to other problems

where small-scale planar objects are to be found in scenes which do not possess the

small-scale planarity property.

Typical outputs of the segmentation systems were images which contained a large

fraction of the targets present, and some regions which did not correspond to any target.

The post-segmentation target detection problem was that of partitioning segmented target

regions from segmented non-target regions. This problem was formulated as a two-class

estimation problem, where the classes were target and non-target.

Bayesian decision theory was used to perform class estimation. The Bayesian

minir um error criterion, called the Maximum a Posteriori (MAP) decision criterion, was

used as the class estimation rule. The classes were assumed to be, a priori, equally likely.

Class-conditioned probabilities for the features were computed by assuming conditional

independence between the features and using a histogram approach to computing the

conditional probabilities.

An initial set of features was evaluated for use in the class estimation system. This

initial set of features was chosen based on sensor physics and an evaluation of the differ-

ences between segmented target regions and segmented non-target regions. A selection

process was applied to the features to select the best three features for each type of sensor

image based on the criterion of minimizing the single feature probability of classification

error.

Five detection systems were developed and compared: (1) FLIR-only; (2) range-

only; (3) FLIR assisted by range image information, or FLIR/range; (4) range assisted by

FLIR image information, or range/FLIR; and (5) the single decision (SD) algorithm. The

single sensor cases, FLIR-only and range-only, provided baseline performance for single

sensor information. The multiple sensor cases, FLIR/range, range/FLIR, and SD, were
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distinguished from the single sensor cases by use of multiple sensor correspondence

feature information in conjunction with single sensor feature information in the class esti-

mation process.

The FLIR/range and range/FLIR algorithms were fundamentally limited to only

detecting target in the dominant sensor image. The SD algorithm overcame this limit by

resolving joint spatial occupancy issues between the segmented regions in each image

and making a single class estimate for each segmented region of space, regardless of

whether the region was segmented in one or both sensor images. Thus, the SD algorithm

was capable of detecting targets segmented in only one sensor image. The SD algorithm

was shown to detect more targets than any of the other target detection approaches.

7.1 Future Directions

Better geometric registration will allow the correspondence feature measurement to

be refined. Specifically, the various fractions of pixels in the cued regions used to

declare the various values for the correspondence feature were developed, in part, as a

concession to small errors in selecting the common pixel. More accurate registration

would allow these fractions to be raised. One likely result is that fewer segmented non-

target regions would obtain the correspondence feature values indicating joint spatial

occupancy with a region in the other image, improving the ability of the correspondence

feature to reject non-target regions.

Better range sensing would probably improve the performance of range segmenta-

tion and the multiple sensor processes. Dense noise spikes were a particular problem in

the range imagery. The presence of these spikes hurt the range segmentation perfor-

mance and impacted the settings used to measure the FUR correspondence feature. One

result was that the FLIR correspondence feature was not as 'good' as the range

correspondence feature using the criterion of single feature probability of classification

error. Reducing or eliminating these noise spikes would improve range segmentation

performance and allow the FUR correspondence feature measurement to be modified,
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with improved performance the likely result.

The assumption of conditional independence between the features coupled with the

histogram approach to exhibiting the required conditional probabilities provided good

performance. Alternatives exist to exhibiting these conditional probabilities.

Specifically, the maximum entropy approach (Cheeseman, 1983) offers a method of

computing the required conditional probabilities which accounts for the dependences

between the variables. This technique is, however, computationally expensive and may

not improve performance.

No work directed at recognizing targets (for example, determining automatically

that a segmented region contained a tank) was performed under this project. The prob-

lem of recognizing detected objects must, however, be addressed before truly auto-

nomous systems, including weapons systems, are developed and fielded outside the

laboratory. The present research provides one approach to a target cuer which would

filter input scenes and locate promising target regions for the recognition system. Work

directed at automatically recognizing detected targets remains for future investigators.
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Appendix A: Sensor Description and Data Collection Methodology

A.0 Introduction

Appendix A provides descriptions of the sensors and methods used to collect the

image data used in this project. The methods used to gather the data base of collocated

FUR and absolute range imagery are also discussed.

A.I FLIR Sensor

A modified Tank Thermal Sight (TIS) FUR sensor was used to collect the FLIR

data. The standard TI'S is a variation of the Army Common Module family of FUR sen-

sors, and is used as the thermal imaging system on many armored vehicles. The common

module family of FLIR sensors was designed with a human observer as the intended end

user. Modifications were made to a standard production model TI'S to make it suitable as

a data collection sensor.

The TTS is a two field of view infrared sensor operating in the 8 to 12 micrometer

band. The fields-of-view in an unmodified T'S are nominally 2.57 degrees (deg) vertical

by 3.43 deg horizontal in the narrow field-of-view, and 7.74 deg vertical by 10.32 deg

horizontal in the wide field-of-view. The pixel angular subtense is nominally square and

of dimension 0.186 milliradian (mr) in the narrow field-of-view and 0.56 mr in the wide

field-of-view (Dockery, 1987). The sensor has 120 detectors arranged vertically, which

are scanned horizontally, with interlace, to make a 240 line image. The standard TI'S has

lines of 320 pixels. To reduce the effects of aliasing in the horizontal dimension, the sen-

sor was modified to oversample each resolution element by a factor of four horizontally,

with no modification of the horizontal field of view. Hence, the data collected had 1280

pixels per line (Dockery, 1987). The detector elements are capacitively coupled to

preamplifiers.
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The 1280 pixel per line FUR images were too large to be viewed on any available

display. To compensate, adjacent pixels in raw, 1280 pixel per line images, were aver-

aged into a single pixel. This reduced the images to 640 pixels per line, while leaving the

images oversampled by a factor of two. Disk storage requirements and run times were

also reduced by a factor of two by this operation.

A.2 FLIR Data Collection Methods

Many of the features used to automatically segment and classify objects in FLIR

images are ultimately based on the relative brightness of collections of pixels in the

image. Since the relative distributions of brightness levels may be drastically changed by

the settings of the gain and brightness controls of a FLIR, the method by which the set-

tings are chosen is quite important to a successful data collection for automatic targeting

technology development.

During the data collection the gain and brightness controls on the TTS FLIR were

adjusted in the following manner. A histogram of the scene to be recorded was computed

on a near real time basis by 'grabbing' a frame of digitized video and performing the

required computation on a resident computer. This histogram was displayed to the FLIR

operator, who then adjusted the gain and brightness controls of the sensor so that minimal

saturation occurred at either end of the dynamic range of the sensor, and so that the aver-

age value of the pixels was in the range 30-120. Hence, the recorded data should have

very few pixels with values 0 and 255 (Dockery, 1987). Histograms computed from the

raw imagery largely support this description of the sensor adjustment technique.

A.3 Range Sensor

The range sensor used to collect the data base was the Tri-Service Laser Radar,

developed by the Raytheon Corporation (Nettleton and Smiley, 1987). Three angular

resolutions and three frame sizes were supported by the sensor. The resolution used was

specified by letter (i.e., A, B, or C), and ranged from 0.05 mr to 0.2 mr. The frame size
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was specified by number (i.e., 5, 6, or 7), and from 64 lines by 127 columns to 256 lines

by 511 columns. Resolutions, frame sizes, and corresponding sizes of the resulting fields

of view are provided in Table (A-1). The pixel data was stored in the NATO format

(Bohner, 1979). Absolute range pixels were represented as 32 bit unsigned integers.

Table (A-1). Range Sensor Imaging Parameters.
(Nettleton and Smilev, 1987)

Name Resolution Image Size
(mrad) (linexcolumn)

5A 0.20 64x127
5B 0.10 64x127
5C 0.05 64x127
6A 0.20 128x255
6B 0.10 128x255
6C 0.05 128x255
7A 0.20 256x511
7B 0.10 256x511
7C 0.05 256x511

A.4 Multisensor Data Collection Technique

The multisensor data collection took place at Ft. A.P. Hill, VA, where a variety of

tactical targets and backgrounds are available for viewing. Data collections took place in

the Drop Zone, a landing area for paratroops during training exercises. Tactical targets

could be viewed at various ranges and aspects in a broad range of environmental condi-

tions. Backgrounds available varied from open field to tree and shrub lines. Data collec-

tions were conducted at all times of day (Dockery, 1987; Nettleton and Smiley, 1987).

The FLIR and laser radar were mounted in separate trailers. The sensors were physi-

cally separated by approximately 5 m and were approximately 3 m above the ground.

The physical mounting of the sensors allowed them to be slewed so that the scene of

interest could be viewed by both sensors (Dockery, 1987).

To collect a data set, the targets were first oriented to the desired aspects. The sen-

sors were then pointed so that a common object in the scene was roughly centered in the

field of view of each sensor. Adjustment of the FLIR gain and brightness controls, as out-
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lined above, was accomplished. FLIR and laser radar images of the scene were then

'grabbed' simultaneously and stored to tape. Often, two or more FUR images were

grabbed in quick succession for each range image obtained.

The targets, the viewing aspects, backgrounds, operating histories, and times of day

for the data collection followed a scripted plan to accomplish defined data collection

goals. Information regarding the various variables of the data collection are provided

elsewhere (Nettleton, 1987).
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Appendix B: Multiple Sensor Data Files

B.0 Introduction

Appendix B provides a list of the data sets and specific image files from the Army

Center for Night Vision and Electro-Optics (CNVEO) June 1987 Multisensor Data Col-

lection used as the data base for this project. The criterion used for selecting sets of

FLIR and range images for inclusion in the data base is also discussed here.

B.1 Data Base

The data used in this project consisted of 97 FLIR images and 57 range images.

The number of FUR images does not match the number of range images due to the

CNVEO philosophy of generally collecting two FLIR images for each range image (see

Appendix A).

Images were drawn from four data sets of the June 1987 Multiple Sensor Data Col-

lection: DF1971, DF1671, DF1572, and DF1771. Tables (B-i) through (13-4) provide

the CNVEO-assigned frame numbers (FLIR images) and file names (range images) of

the corresponding image sets used in this project. These identifiers are provided in

Header 2 of the NATO format tapes provided by CNVEO (Bohner, 1979).

B.2 Selection Criterion

A selection process was applied to the imagery which included images which could

be geometrically registered in the data base. This process involved manual review of

matched sets of segmented images.

Specifically, to be included as a FLIR/range image set in the data base at least one

target common to both images had to be segmented with high accuracy. This require-

ment allowed the selection of the center pixel in each sensor view of the common target
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to be taken as originating from the same scene element, providing a basis for geometrical

registration of regions between the images. This pixel was called the common pixel.

Geometric registration of the images was then accomplished through angular translations

from the common pixel in each image.
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Table (B-1). DF1971 Multiple Sensor Data Sets

FLIR Frame # Range File Name

62311 LD61976C(9TA1
62494 LD61976C09TA1
78264 LD61976CI1TR1
78447 LD61976C11TR1
13567 LD61975B11TRI
13749 LD61975B11TRI
18939 LD61975B1OAPI
19122 LD61975B10API
23108 LD61975B09TA1
23290 LD61975B09TA1
71348 LD61975B10AP2
77212 LD61975B11TR2
77395 LD61975B11TR2
00252 LD61976C11TR2
00434 LD61976C1 ITR2
05745 LD61976C10AP2
05927 LD61976C10AP2
13907 LD61976C09TA2
14089 LD61976C09TA2
48024 LD61976C09TA3
48207 LD61976C09TA3
52052 LD61976CIOAP3
52234 LD61976C"Z .AP3
55773 LD61976C11TR3
55956 LD61976C1 ITR3
73578 LD61975BI 1TR3
73760 LD61975B11TR3
77743 LD61975B10AP3
77926 LD61975B 10AP3
82491 LD61975B09TA3
82674 LD61975B09TA3
10660 LD61975B09TA4
10843 LD61975B09TA4
17752 LD61975B 10AP4
17934 LD61975BIOAP4
21494 LD61975B 11TR4
21677 LD61975BI1TR4
49583 LD61976C11TR4
53288 LD61976CIOAP4
53470 LD61976CIOAP4
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Table (B-2). DF 1671 Multiple Sensor Data Sets

FUR Frame # Range File Name

67234 LD61677A17M1
67417 LD61677A17M1
79473 LD6l677Cl7M1
96950 LD61677Al7M2
97133 LD61677A17M2
21668 LD61677A17M3
21850 LD61677A17M3
69935 LD61677C17M4
70118 LD61677C17M4
76829 LD61677A17M4
77012 LD61677A17M4
23200 LD61677C17M6
29035 LD)61677Al7M6
29218 LD61677A17M6
66473 LD61677A17M7
66656 LD61677A17M7
71527 LD61677C17M7
71710 LD61677C17M7
01448 LD61677A17M8
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Table (B-3). DF1572 Multiple Sensor Data Sets

FLIR Frame # Range File Name

47396 LD61577CIOM1
47578 LD61577CIOM1
53895 LD61576B10M11
54077 LD61576B 10M12
67110 LD61576B10M21
67293 LD61576B10M22
71023 LD61577C10M2
71206 LD61577C10M2
95739 LD61577C10M3
9592 i LD61577C10M3
01983 LD61576B10M31
02165 LD61576B10M32
15431 LD61576B 10M41
15614 LD61576B10M42
19643 LD61577C10M4
19825 LD61577C10M4
56898 LD61576B 1OM5B 1
57080 LD61576B 10M5B2
67868 LD61576B 10M62
71678 LD61577C10M6B
71861 LD61577C10M6B
76979 LD61577C10M6B
77161 LD61577C10M6B
06387 LD61577C10M7
11119 LD61576B10M72
33781 LD61576B10M82
37676 LD61577C10M8
37858 LD61577C10M8
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Table (B-4). DF1771 Multiple Sensor Data Sets

FLUR Frame # Range File Name

55996 LD61777C17MI
56180 LD61777CI7M1
29011 LD61777C17M2
29194 LD61777CI7M2
20774 LD61777CI7M7
20956 LD61777C17M7
53922 LD61777CI7M8
54105 LD61777C17M8
44034 LD61777C17MI0
44216 LD61777CI7M10J
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Appendix C: Absolute Performance of Detection Algorithms

C.0 Introduction

Absolute performance of all the detection algorithms as a function of feature choice

is provided in this appendix. Three FLIR features and three range features were used.

The FLIR features were:

1) Complexity

2) Length-to-width ratio

3) Contrast of the means

The range features were

1) Length-to-width ratio

2) Absolute difference of the standard deviations

3) Complexity

These features are referred to by sensor and feature index. Thus, FLIR: 1 refers to the

FLIR image complexity feature. The absolute class estimation performance of each class

estimation technique is reported as a function of combinations of these features.

There were 153 target opportunities and 23 non-target opportunities for the FLIR-

only and FLIR/range algorithms. There were 207 target opportunities and 463 non-target

opportunities for the range-only and range/FLIR algorithms. The SD algorithm had 217

target opportunities and 483 non-target opportunities.

C.1 Performance

In the succeeding tables the absolute class estimation performance is reported in

two categories: (1) the number of target regions correctly classified (# target regions

correct); and (2) the number of non-target regions incorrectly classified (# non-target

regions incorrect). In this scheme, (1) represents the detection rate and (2) is a value
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required to compute the rate of false alarms per detection declaration.

Table (C-I). Performance for FLIR:I; and Range:1.

Algorithm # Target Regions # Non-target Regions
Correct Incorrect

FUR 110 1
Range 176 116
FLIR/Range 126 1
Range/FLIR 197 30
SD 198 32

Table (C-2). Performance for FLIR:2; and Range:2.

Algorithm # Target Regions # Non-target Regions
Correct Incorrect

FLIR 120 6
Range 79 47
FLIR/Range 120 4
Range/FLIR 197 47
SD 194 50

Table (C-3). Performance for FLIR:3; and Range:3.

Algorithm # Target Regions # Non-target Regions
Correct Incorrect

FUR 99 4
Range 132 81
FLIR/Range 122 3
Range/FLIR 192 45
SD 193 47
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Table (C-4). Performance for FLIR: 1,2; and Range:1,2.

Algorithm # Target Regions # Non-target Regions
Correct Incorrect

FLIR 127 1
Range 118 92
FLIR/Range 129 1
Range/FLIR 186 25
SD 185 27

Table (C-5). Performance for FLIR:1,3; and Range:1,3.

Algorithm # Target Regions # Non-target Regions
Correct Incorrect

FLR 130 1
Range 176 89
FLIR/Range 138 1
Range/FLIR 187 29
SD 191 31

Table (C-6). Performance for FLIR:2,3; and Range:2,3.

Algorithm # Target Regions # Non-target Regions
Correct Incorrect

FUR 127 1
Range 109 52
FLIR/Range 131 1
Range/FLIR 177 41
SD 180 41
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Table (C-7). Performance for FLIR: 1,2,3; and Range:1,2,3.

Algorithm # Target Regions # Non-target Regions
Correct Incorrect

FLIR 131 1
Range 141 25
FLIR/Range 136 1
Range/FLIR 187 21
SD 187 23

Table (C-8). Performance for FLIR:1,3; and Range: 1.

Algorithm # Target Regions # Non-target Regions
Correct Incorrect

FLIR 130 1
Range 176 116
FLIR/Range 138 1
Range/FLIR 197 30
SD 201 32
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